The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

CSTL1  -  cystatin-like 1

Homo sapiens

Synonyms: CTES1, Cystatin-like 1, RCET11, dJ322G13.4
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of CSTL1


High impact information on CSTL1

  • The "occluding loop' does not allow cystatin-like protein inhibitors to bind to cathepsin B as they do to papain, consistent with the reduced affinity of these protein inhibitors for cathepsin B compared with the related plant enzymes [3].
  • Using the crystalline structure of cystatin to computer model domain-3, LDC27 and CNA13 were located in the second hairpin loop of the reactive site of cystatin-like proteins (Bode, W., Engh, R., Musil, D., Thiele, U. Huber, R., Karshikov, A., Brzin, J., Kos, J., and Turk, V. (1988) EMBO J. 7, 2593-2599) [4].
  • However, preferential cleavage of T-kininogen close to the junction between cystatin-like domains released fragments which, provided they included cystatin-like domains 2 and/or 3, strongly inhibited papain and cathepsin L. The fragments were inhibitory even when parts of the amino-terminal ends of the domains were lacking [5].
  • It is concluded that alpha 2-HS glycoprotein represents a structural prototype of a novel family among the cystatin superfamily, characterized by the presence of two cystatin-like building blocks [6].
  • The proteinase-sensitive regions are located at the junctions of the three cystatin-like domains constituting the kininogen heavy chain [7].

Biological context of CSTL1

  • Cystatins as calpain inhibitors: engineered chicken cystatin- and stefin B-kininogen domain 2 hybrids support a cystatin-like mode of interaction with the catalytic subunit of mu-calpain [8].
  • Each of cystatin-like domains I and II of HRG is encoded by three exons, exons I to III and exons IV to VI, respectively, like those of other members of the cystatin superfamily [9].

Anatomical context of CSTL1


Associations of CSTL1 with chemical compounds

  • The presence of cystatin-like inhibitors in lower eukaryotes such as protozoan parasites has not yet been demonstrated, although these cells express large quantities of cysteine proteases and may also count on endogenous inhibitors to regulate cellular proteolysis [14].
  • The high gene density of Fugu is shown by the close proximity of a cystatin-like gene 1503 bp from the dopamine receptor gene D222 [15].

Regulatory relationships of CSTL1

  • Analyses of endogenous cathepsin B inhibitor activity in control and heat-treated cell homogenates after fractionation by fast protein liquid chromatography suggested that alterations in cystatin-like, cysteine protease inhibitor activities contribute to increased levels of cathepsin activities in metastatic MCF-7/AdrR cells [16].

Other interactions of CSTL1


Analytical, diagnostic and therapeutic context of CSTL1


  1. CMAP: a novel cystatin-like gene involved in liver metastasis. Morita, M., Yoshiuchi, N., Arakawa, H., Nishimura, S. Cancer Res. (1999) [Pubmed]
  2. Is the cystatin-like domain of TSL functionally active in external ocular infections and during the normal diurnal cycle? Sack, R.A., Sathe, S., Beaton, A., Kozinski, M., Bogart, B., Lew, G., Sharma, S., Upponi, A. Exp. Eye Res. (2004) [Pubmed]
  3. The refined 2.15 A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity. Musil, D., Zucic, D., Turk, D., Engh, R.A., Mayr, I., Huber, R., Popovic, T., Turk, V., Towatari, T., Katunuma, N. EMBO J. (1991) [Pubmed]
  4. Identification of an endothelial cell binding site on kininogen domain D3. Herwald, H., Hasan, A.A., Godovac-Zimmermann, J., Schmaier, A.H., Müller-Esterl, W. J. Biol. Chem. (1995) [Pubmed]
  5. Limited proteolysis of T-kininogen (thiostatin). Release of comparable fragments by different endopeptidases. Moreau, T., Gutman, N., Faucher, D., Gauthier, F. J. Biol. Chem. (1989) [Pubmed]
  6. The arrangement of disulfide loops in human alpha 2-HS glycoprotein. Similarity to the disulfide bridge structures of cystatins and kininogens. Kellermann, J., Haupt, H., Auerswald, E.A., Müller-Ester, W. J. Biol. Chem. (1989) [Pubmed]
  7. Proteinase-sensitive regions in the heavy chain of low molecular weight kininogen map to the inter-domain junctions. Vogel, R., Assfalg-Machleidt, I., Esterl, A., Machleidt, W., Müller-Esterl, W. J. Biol. Chem. (1988) [Pubmed]
  8. Cystatins as calpain inhibitors: engineered chicken cystatin- and stefin B-kininogen domain 2 hybrids support a cystatin-like mode of interaction with the catalytic subunit of mu-calpain. Díaz, B.G., Gross, S., Assfalg-Machleidt, I., Pfeiler, D., Gollmitzer, N., Gabrijelcic-Geiger, D., Stubbs, M.T., Fritz, H., Auerswald, E.A., Machleidt, W. Biol. Chem. (2001) [Pubmed]
  9. Structural characterization of the gene for human histidine-rich glycoprotein, reinvestigation of the 5'-terminal region of cDNA and a search for the liver specific promoter in the gene. Wakabayashi, S., Takahashi, K., Koide, T. J. Biochem. (1999) [Pubmed]
  10. Molecular cloning and characterization of a novel cystatin-like molecule, CLM, from human bone marrow stromal cells. Sun, H., Li, N., Wang, X., Liu, S., Chen, T., Zhang, L., Wan, T., Cao, X. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  11. T-kininogen, a cystatin-like molecule, inhibits ERK-dependent lymphocyte proliferation. Acuña-Castillo, C., Aravena, M., Leiva-Salcedo, E., Pérez, V., Gómez, C., Sabaj, V., Nishimura, S., Pérez, C., Colombo, A., Walter, R., Sierra, F. Mech. Ageing Dev. (2005) [Pubmed]
  12. Characterization of monoclonal antibodies to human salivary (glyco) proteins. Cellular localization of mucin, cystatin-like 14 kD protein and 20 kD glycoprotein in the human submandibular gland. Rathman, W.M., van den Keybus, P.A., van Zeyl, M.J., Döpp, E.A., Veerman, E.C., Nieuw Amerongen, A.V. Journal de biologie buccale. (1990) [Pubmed]
  13. Immunofluorescence localization of cystatins in human lacrimal gland and in the exorbital lacrimal gland of the rat. Takahashi, M., Honda, Y., Ogawa, K., Barka, T. Acta ophthalmologica. (1992) [Pubmed]
  14. Identification, characterization and localization of chagasin, a tight-binding cysteine protease inhibitor in Trypanosoma cruzi. Monteiro, A.C., Abrahamson, M., Lima, A.P., Vannier-Santos, M.A., Scharfstein, J. J. Cell. Sci. (2001) [Pubmed]
  15. Analysis of the dopamine receptor family in the compact genome of the puffer fish Fugu rubripes. Macrae, A.D., Brenner, S. Genomics (1995) [Pubmed]
  16. Characterization of cysteine proteases and their endogenous inhibitors in MCF-7 and adriamycin-resistant MCF-7 human breast cancer cells. Scaddan, P.B., Dufresne, M.J. Invasion Metastasis (1993) [Pubmed]
  17. Cystatin superfamily. Evidence that family II cystatin genes are evolutionarily related to family III cystatin genes. Saitoh, E., Isemura, S., Sanada, K., Kim, H.S., Smithies, O., Maeda, N. Biol. Chem. Hoppe-Seyler (1988) [Pubmed]
  18. Full-length cDNA of human cathepsin F predicts the presence of a cystatin domain at the N-terminus of the cysteine protease zymogen. Nägler, D.K., Sulea, T., Ménard, R. Biochem. Biophys. Res. Commun. (1999) [Pubmed]
  19. The N-terminal part of recombinant human tear lipocalin/von Ebner's gland protein confers cysteine proteinase inhibition depending on the presence of the entire cystatin-like sequence motifs. Wojnar, P., van't Hof, W., Merschak, P., Lechner, M., Redl, B. Biol. Chem. (2001) [Pubmed]
  20. Domain structure and conformation of histidine-proline-rich glycoprotein. Borza, D.B., Tatum, F.M., Morgan, W.T. Biochemistry (1996) [Pubmed]
  21. A multicystatin is induced by drought-stress in cowpea (Vigna unguiculata (L.) Walp.) leaves. Diop, N.N., Kidric, M., Repellin, A., Gareil, M., d'Arcy-Lameta, A., Pham Thi, A.T., Zuily-Fodil, Y. FEBS Lett. (2004) [Pubmed]
WikiGenes - Universities