The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

LOC292801  -  lacrimal gland protein

Rattus norvegicus

Synonyms: Abpa1, Abpa2
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of LOC292801

 

High impact information on LOC292801

 

Chemical compound and disease context of LOC292801

 

Biological context of LOC292801

 

Anatomical context of LOC292801

 

Associations of LOC292801 with chemical compounds

  • To investigate the nature of this neuroimmunoendocrine interaction, the present study examined the impact of hormones, neurotransmitters, and lymphokines on basal and androgen-induced SC production by lacrimal gland acinar cells in vitro [16].
  • Moreover, the SC response to DHT occurred irrespective of whether lacrimal gland acinar cells were obtained from young adult male or female rats [17].
  • The muscarinic receptor from the cerebral cortex, heart, and lacrimal gland can be solubilized in the zwitterionic detergent 3-(3-cholamidopropyl)dimethylammonio-2-hydroxy-1-propane sulfonate (CHAPSO) with retention of high affinity [3H]N-methyls-copolamine binding [18].
  • At the protein level, the C3 component in the lacrimal gland is glycosylated and linked by disulfide bridges to a new 10-kDa component not reacting with the PBP antiserum [15].
  • Retinoic acid may play a role in maintaining the proper function of lacrimal gland cells [19].
 

Physical interactions of LOC292801

 

Regulatory relationships of LOC292801

  • METHODS: Lacrimal gland acini were isolated by collagenase digestion and incubated with phorbol 12-myristate 13-acetate (PMA) to activate PKC or ionomycin, a Ca(2+) ionophore [21].
  • Comparison with a rat brain cytosolic fraction indicated that it is PKC-alpha which is expressed in the rat lacrimal gland [22].
  • In this report, it is demonstrated that the C3 component of prostatic binding protein (PBP) is also expressed and androgen regulated in the exorbital lacrimal gland, as shown previously for cystatin-related protein (CRP), another abundant secretory protein from the ventral prostate [15].
  • We conclude that cholinergic agonists stimulate lacrimal gland protein secretion primarily by mobilizing Ca2+ from intracellular stores and that one mechanism by which this Ca2+ could activate secretion is in conjunction with calmodulin [23].
 

Other interactions of LOC292801

  • Differential effects of the EGF family of growth factors on protein secretion, MAPK activation, and intracellular calcium concentration in rat lacrimal gland [24].
  • We conclude that all members of the EGF family of growth factors studied are synthesised in rat lacrimal gland, could activate all four ErbB receptors that are present in this tissue, and differentially activate lacrimal gland functions [24].
  • Though mucins are not generally considered a product of the lacrimal gland, our results clearly show Muc4/SMC is produced by the gland in soluble and membrane forms [20].
  • In this work, we show that when the rat lacrimal gland cytosolic fraction is chromatographed on hydroxyapatite, only one peak of PKC activity can be detected [22].
  • We conclude that PKC-alpha and -epsilon, but not PKC-delta, are implicated in cholinergic agonist-induced protein secretion in rat lacrimal gland [25].
 

Analytical, diagnostic and therapeutic context of LOC292801

References

  1. Target specificity of neuropeptide Y-immunoreactive cranial parasympathetic neurons. Leblanc, G.G., Landis, S.C. J. Neurosci. (1988) [Pubmed]
  2. Experimental autoimmune dacryoadenitis. I. Lacrimal gland disease in the rat. Liu, S.H., Prendergast, R.A., Silverstein, A.M. Invest. Ophthalmol. Vis. Sci. (1987) [Pubmed]
  3. Effect of overexpression of constitutively active PKCalpha on rat lacrimal gland protein secretion. Hodges, R.R., Raddassi, I., Zoukhri, D., Toker, A., Kazlauskas, A., Dartt, D.A. Invest. Ophthalmol. Vis. Sci. (2004) [Pubmed]
  4. Autoantibodies against lacrimal gland M3 muscarinic acetylcholine receptors in patients with primary Sjögren's syndrome. Bacman, S., Perez Leiros, C., Sterin-Borda, L., Hubscher, O., Arana, R., Borda, E. Invest. Ophthalmol. Vis. Sci. (1998) [Pubmed]
  5. Relationship between the Golgi apparatus, GERL, and secretory granules in acinar cells of the rat exorbital lacrimal gland. Hand, A.R., Oliver, C. J. Cell Biol. (1977) [Pubmed]
  6. Exocytosis in secretory cells of rat lacrimal gland. Peroxidase release from lobules and isolated cells upon cholinergic stimulation. Herzog, V., Sies, H., Miller, F. J. Cell Biol. (1976) [Pubmed]
  7. JEAP, a novel component of tight junctions in exocrine cells. Nishimura, M., Kakizaki, M., Ono, Y., Morimoto, K., Takeuchi, M., Inoue, Y., Imai, T., Takai, Y. J. Biol. Chem. (2002) [Pubmed]
  8. Molecular cloning and characterization of an aquaporin cDNA from salivary, lacrimal, and respiratory tissues. Raina, S., Preston, G.M., Guggino, W.B., Agre, P. J. Biol. Chem. (1995) [Pubmed]
  9. In vitro adhesive interactions between rat lymphocytes and lacrimal gland acinar epithelium. Phenotype of adherent lymphocytes and involvement of adhesion molecules. O'Sullivan, N.L., Skandera, C.A., Chin, Y.H., Montgomery, P.C. J. Immunol. (1994) [Pubmed]
  10. Characterization of the insulin-signaling pathway in lacrimal and salivary glands of rats. Rocha, E.M., de M Lima, M.H., Carvalho, C.R., Saad, M.J., Velloso, L.A. Curr. Eye Res. (2000) [Pubmed]
  11. Immunofluorescence localization of cystatins in human lacrimal gland and in the exorbital lacrimal gland of the rat. Takahashi, M., Honda, Y., Ogawa, K., Barka, T. Acta ophthalmologica. (1992) [Pubmed]
  12. Muscarinic acetylcholine receptor structure in acinar cells of mammalian exocrine glands. Hootman, S.R., Picado-Leonard, T.M., Burnham, D.B. J. Biol. Chem. (1985) [Pubmed]
  13. Ca2+- and calmodulin-dependent protein phosphorylation in rat lacrimal gland. Dartt, D.A., Guerina, V.J., Donowitz, M., Taylor, L., Sharp, G.W. Biochem. J. (1982) [Pubmed]
  14. Identification of vasoactive intestinal peptide receptor subtypes in the lacrimal gland and their signal-transducing components. Hodges, R.R., Zoukhri, D., Sergheraert, C., Zieske, J.D., Dartt, D.A. Invest. Ophthalmol. Vis. Sci. (1997) [Pubmed]
  15. Androgens transcriptionally regulate the expression of cystatin-related protein and the C3 component of prostatic binding protein in rat ventral prostate and lacrimal gland. Vercaeren, I., Vanaken, H., Devos, A., Peeters, B., Verhoeven, G., Heyns, W. Endocrinology (1996) [Pubmed]
  16. Endocrine, neural, and immune control of secretory component output by lacrimal gland acinar cells. Kelleher, R.S., Hann, L.E., Edwards, J.A., Sullivan, D.A. J. Immunol. (1991) [Pubmed]
  17. Androgen regulation of secretory component synthesis by lacrimal gland acinar cells in vitro. Sullivan, D.A., Kelleher, R.S., Vaerman, J.P., Hann, L.E. J. Immunol. (1990) [Pubmed]
  18. Binding and hydrodynamic properties of muscarinic receptor subtypes solubilized in 3-(3-cholamidopropyl)dimethylammonio-2-hydroxy-1-propanesulfonate. Poyner, D.R., Birdsall, N.J., Curtis, C., Eveleigh, P., Hulme, E.C., Pedder, E.K., Wheatley, M. Mol. Pharmacol. (1989) [Pubmed]
  19. Cellular retinoic acid-binding protein in rat lacrimal gland. Yamaguchi, K., Gaur, V.P., Young, R.W., Sweatt, A.J. Invest. Ophthalmol. Vis. Sci. (1991) [Pubmed]
  20. ErbB2 and its ligand Muc4 (sialomucin complex) in rat lacrimal gland. Carraway, K.L., Carvajal, M.E., Li, P., Carraway, C.A. Adv. Exp. Med. Biol. (2002) [Pubmed]
  21. Roles of protein kinase C, Ca2+, Pyk2, and c-Src in agonist activation of rat lacrimal gland p42/p44 MAPK. Hodges, R.R., Rios, J.D., Vrouvlianis, J., Ota, I., Zoukhri, D., Dartt, D.A. Invest. Ophthalmol. Vis. Sci. (2006) [Pubmed]
  22. The rat lacrimal gland expresses the alpha isoform of PKC. Further evidence for the PMA-activated and phospholipid-independent protein kinase activity. Zoukhri, D., Pelosin, J.M., Mauduit, P., Chambaz, E., Sergheraert, C., Rossignol, B. Cell. Signal. (1992) [Pubmed]
  23. Role of calcium in cholinergic stimulation of lacrimal gland protein secretion. Dartt, D.A., Rose, P.E., Joshi, V.M., Donowitz, M., Sharp, G.W. Curr. Eye Res. (1985) [Pubmed]
  24. Differential effects of the EGF family of growth factors on protein secretion, MAPK activation, and intracellular calcium concentration in rat lacrimal gland. Chen, L.L., Johansson, J.K., Hodges, R.R., Zoukhri, D., Ghinelli, E., Rios, J.D., Dartt, D.A. Exp. Eye Res. (2005) [Pubmed]
  25. Role of protein kinase C in cholinergic stimulation of lacrimal gland protein secretion. Zoukhri, D., Hodges, R.R., Dicker, D.M., Dartt, D.A. FEBS Lett. (1994) [Pubmed]
  26. Presence and localization of neurotrophins and neurotrophin receptors in rat lacrimal gland. Ghinelli, E., Johansson, J., Ríos, J.D., Chen, L.L., Zoukhri, D., Hodges, R.R., Dartt, D.A. Invest. Ophthalmol. Vis. Sci. (2003) [Pubmed]
  27. Muscarinic acetylcholine receptor antibodies as a new marker of dry eye Sjögren syndrome. Bacman, S., Berra, A., Sterin-Borda, L., Borda, E. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
 
WikiGenes - Universities