The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

Ly96  -  lymphocyte antigen 96

Mus musculus

Synonyms: ESOP-1, Esop1, Ly-96, Lymphocyte antigen 96, MD-2, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ly96

  • We show here that MD-2(-/-) mice do not respond to LPS, do survive endotoxic shock but are susceptible to Salmonella typhimurium infection [1].
  • Toll-like receptor 4-MD-2 complex mediates the signal transduction induced by flavolipin, an amino acid-containing lipid unique to Flavobacterium meningosepticum [2].
  • METHODS: Peripheral blood mononuclear cells (PBMCs) from 28 patients with head and neck cancer were analyzed for TLR4 and MD-2 mRNA expression by reverse transcription-polymerase chain reaction (RT-PCR) analysis [3].
  • Similarly, E. coli LPS is an agonist and E5531 an antagonist on monocytes isolated from peripheral blood of healthy horses and human embryonic kidney (HEK) cells, transiently transfected to express horse TLR4 and its associated cell surface proteins MD2 and CD14 [4].
  • These results demonstrate that neutralizing TLR4/MD-2 is highly efficacious in protecting against bacterial infection-induced toxemia and offers TLR4/MD-2 mAb treatment as a potential therapy for numerous clinical indications [5].
 

High impact information on Ly96

  • MD-2 is associated with the extracellular domain of TLR4 and augments TLR4-dependent LPS responses in vitro [1].
  • In HEK 293 cells exogenously expressing TLR4, MD2 and CD14, co-expression of JIP3 significantly increased the complex formation of TLR4-JNK and LPS-mediated JNK activation [6].
  • ESOP-1 mRNA was highly expressed in the mouse embryos at 7.5 days after coitus [7].
  • In vitro, P. acnes-primed Hepa 1-6 hepatocytes but not RAW macrophages produced increased MD-2 and CD14 mRNA levels after an LPS challenge [8].
  • Using primary cultures of microdissected Lps(n) MCDs that expressed TLR4 and its accessory molecules MD2, MyD88, and CD14, we also show that UPECs stimulated both a TLR4-mediated, MyD88-dependent, TIR domain-containing adaptor-inducing IFN-beta-independent pathway and a TLR4-independent pathway, leading to bipolarized secretion of MIP-2 [9].
 

Biological context of Ly96

 

Anatomical context of Ly96

 

Physical interactions of Ly96

  • The purity of Kdo(2)-Lipid A should facilitate structural analysis of complexes with receptors like TLR-4/MD2 [17].
 

Other interactions of Ly96

  • (R)-Flavolipin, in which the configuration of the lipid moiety is R, induced NF-kappaB activation via the TLR4-MD-2 complex, but (S)-flavolipin did not [2].
 

Analytical, diagnostic and therapeutic context of Ly96

References

  1. Essential role of MD-2 in LPS responsiveness and TLR4 distribution. Nagai, Y., Akashi, S., Nagafuku, M., Ogata, M., Iwakura, Y., Akira, S., Kitamura, T., Kosugi, A., Kimoto, M., Miyake, K. Nat. Immunol. (2002) [Pubmed]
  2. Toll-like receptor 4-MD-2 complex mediates the signal transduction induced by flavolipin, an amino acid-containing lipid unique to Flavobacterium meningosepticum. Gomi, K., Kawasaki, K., Kawai, Y., Shiozaki, M., Nishijima, M. J. Immunol. (2002) [Pubmed]
  3. Involvement of Toll-like receptor 4 signaling in interferon-gamma production and antitumor effect by streptococcal agent OK-432. Okamoto, M., Oshikawa, T., Tano, T., Ohe, G., Furuichi, S., Nishikawa, H., Ahmed, S.U., Akashi, S., Miyake, K., Takeuchi, O., Akira, S., Moriya, Y., Matsubara, S., Ryoma, Y., Saito, M., Sato, M. J. Natl. Cancer Inst. (2003) [Pubmed]
  4. The cellular Toll-like receptor 4 antagonist E5531 can act as an agonist in horse whole blood. Bryant, C.E., Ouellette, A., Lohmann, K., Vandenplas, M., Moore, J.N., Maskell, D.J., Farnfield, B.A. Vet. Immunol. Immunopathol. (2007) [Pubmed]
  5. TLR4/MD-2 monoclonal antibody therapy affords protection in experimental models of septic shock. Daubeuf, B., Mathison, J., Spiller, S., Hugues, S., Herren, S., Ferlin, W., Kosco-Vilbois, M., Wagner, H., Kirschning, C.J., Ulevitch, R., Elson, G. J. Immunol. (2007) [Pubmed]
  6. JNK-interacting protein 3 associates with Toll-like receptor 4 and is involved in LPS-mediated JNK activation. Matsuguchi, T., Masuda, A., Sugimoto, K., Nagai, Y., Yoshikai, Y. EMBO J. (2003) [Pubmed]
  7. ESOP-1, a secreted protein expressed in the hematopoietic, nervous, and reproductive systems of embryonic and adult mice. Kato, K., Morrison, A.M., Nakano, T., Tashiro, K., Honjo, T. Blood (2000) [Pubmed]
  8. Selective priming to Toll-like receptor 4 (TLR4), not TLR2, ligands by P. acnes involves up-regulation of MD-2 in mice. Romics, L., Dolganiuc, A., Kodys, K., Drechsler, Y., Oak, S., Velayudham, A., Mandrekar, P., Szabo, G. Hepatology (2004) [Pubmed]
  9. Renal Collecting Duct Epithelial Cells React to Pyelonephritis-Associated Escherichia coli by Activating Distinct TLR4-Dependent and -Independent Inflammatory Pathways. Chassin, C., Goujon, J.M., Darche, S., du Merle, L., Bens, M., Cluzeaud, F., Werts, C., Ogier-Denis, E., Le Bouguénec, C., Buzoni-Gatel, D., Vandewalle, A. J. Immunol. (2006) [Pubmed]
  10. CD40-mediated up-regulation of Toll-like receptor 4-MD2 complex on the surface of murine dendritic cells. Frleta, D., Noelle, R.J., Wade, W.F. J. Leukoc. Biol. (2003) [Pubmed]
  11. Secretion of mouse alpha-amylase from Kluyveromyces lactis. Tokunaga, M., Ishibashi, M., Tatsuda, D., Tokunaga, H. Yeast (1997) [Pubmed]
  12. Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. Akashi, S., Shimazu, R., Ogata, H., Nagai, Y., Takeda, K., Kimoto, M., Miyake, K. J. Immunol. (2000) [Pubmed]
  13. Identification of mouse MD-2 residues important for forming the cell surface TLR4-MD-2 complex recognized by anti-TLR4-MD-2 antibodies, and for conferring LPS and taxol responsiveness on mouse TLR4 by alanine-scanning mutagenesis. Kawasaki, K., Nogawa, H., Nishijima, M. J. Immunol. (2003) [Pubmed]
  14. Strategic compartmentalization of Toll-like receptor 4 in the mouse gut. Ortega-Cava, C.F., Ishihara, S., Rumi, M.A., Kawashima, K., Ishimura, N., Kazumori, H., Udagawa, J., Kadowaki, Y., Kinoshita, Y. J. Immunol. (2003) [Pubmed]
  15. Regulation of Toll-like receptors in human monocytes and dendritic cells. Visintin, A., Mazzoni, A., Spitzer, J.H., Wyllie, D.H., Dower, S.K., Segal, D.M. J. Immunol. (2001) [Pubmed]
  16. MD-2 is required for the full responsiveness of mast cells to LPS but not to PGN. Ushio, H., Nakao, A., Supajatura, V., Miyake, K., Okumura, K., Ogawa, H. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  17. Kdo2-Lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4. Raetz, C.R., Garrett, T.A., Reynolds, C.M., Shaw, W.A., Moore, J.D., Smith, D.C., Ribeiro, A.A., Murphy, R.C., Ulevitch, R.J., Fearns, C., Reichart, D., Glass, C.K., Benner, C., Subramaniam, S., Harkewicz, R., Bowers-Gentry, R.C., Buczynski, M.W., Cooper, J.A., Deems, R.A., Dennis, E.A. J. Lipid Res. (2006) [Pubmed]
 
WikiGenes - Universities