The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

PNMT  -  phenylethanolamine N-methyltransferase

Bos taurus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of PNMT


High impact information on PNMT


Biological context of PNMT


Anatomical context of PNMT


Associations of PNMT with chemical compounds

  • Bovine adrenomedullary PNMT was purified by ammonium sulfate precipitation, gel filtration, and ion exchange chromatography [7].
  • Carbachol, which activates both nicotinic and muscarinic receptors, produces 12-19-fold increases in PNMT mRNA and a 22-fold increase in epinephrine release [12].
  • Nuclear "run-on" assays further reveal that nicotine enhances transcription of the PNMT gene (approximately fourfold) [12].
  • Treatment of the cells with dexamethasone (100 microM) prevented the decline in the epinephrine-to-norepinephrine ratio seen over time in culture, an effect consistent with increased PNMT activity [8].
  • Muscarine alone produces a dose-dependent increase (mean sixfold) in steady state PNMT mRNA levels and stimulates the rate of transcription fivefold [12].

Regulatory relationships of PNMT

  • Nor does PACAP stimulate the rate of PNMT gene transcription, thereby indicating that the effects of this neuropeptide do not involve enhanced transcription of this gene [13].
  • DBH and PNMT appear to be regulated via the same mechanism as TH [14].
  • In the absence of the growth factor, the mRNA levels of TH and DBH were decreased to 45 +/- 10% and 35 +/- 12% of the time-zero control within 48 h while PNMT mRNA was decreased to 82 +/- 5% only after 72 h [15].

Other interactions of PNMT


Analytical, diagnostic and therapeutic context of PNMT


  1. The complete nucleotide sequence and structure of the gene encoding bovine phenylethanolamine N-methyltransferase. Batter, D.K., D'Mello, S.R., Turzai, L.M., Hughes, H.B., Gioio, A.E., Kaplan, B.B. J. Neurosci. Res. (1988) [Pubmed]
  2. Phenylethanolamine N-methyltransferase-containing neurons in rat retina: immunohistochemistry, immunochemistry, and molecular biology. Park, D.H., Teitelman, G., Evinger, M.J., Woo, J.I., Ruggiero, D.A., Albert, V.R., Baetge, E.E., Pickel, V.M., Reis, D.J., Joh, T.H. J. Neurosci. (1986) [Pubmed]
  3. Yeast phosphatidylethanolamine methylation pathway. Cloning and characterization of two distinct methyltransferase genes. Kodaki, T., Yamashita, S. J. Biol. Chem. (1987) [Pubmed]
  4. Complete nucleotide and deduced amino acid sequence of bovine phenylethanolamine N-methyltransferase: partial amino acid homology with rat tyrosine hydroxylase. Baetge, E.E., Suh, Y.H., Joh, T.H. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  5. Restricted diffusion of tyrosine hydroxylase and phenylethanolamine N-methyltransferase from digitonin-permeabilized adrenal chromaffin cells. Kelner, K.L., Morita, K., Rossen, J.S., Pollard, H.B. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  6. Differential expression of alpha-bungarotoxin-sensitive neuronal nicotinic receptors in adrenergic chromaffin cells: a role for transcription factor Egr-1. Criado, M., Domínguez del Toro, E., Carrasco-Serrano, C., Smillie, F.I., Juíz, J.M., Viniegra, S., Ballesta, J.J. J. Neurosci. (1997) [Pubmed]
  7. Purification and partial amino acid sequence of bovine adrenal phenylethanolamine N-methyltransferase: a comparison of nucleic acid and protein sequence data. Weisberg, E.P., Batter, D.K., Brown, W.E., Kaplan, B.B. J. Neurosci. Res. (1988) [Pubmed]
  8. Glucocorticoid receptors and regulation of phenylethanolamine-N-methyltransferase activity in cultured chromaffin cells. Kelner, K.L., Pollard, H.B. J. Neurosci. (1985) [Pubmed]
  9. Synthesis and evaluation of 3-trifluoromethyl-7-substituted-1,2,3, 4-tetrahydroisoquinolines as selective inhibitors of phenylethanolamine N-methyltransferase versus the alpha(2)-adrenoceptor. Grunewald, G.L., Caldwell, T.M., Li, Q., Criscione, K.R. J. Med. Chem. (1999) [Pubmed]
  10. Possible mechanism of action of SKF 64139 in vivo on rat adrenal and brain phenylethanolamine N-methyltransferase activity. Park, D.H., Ruggiero, D.A., Anwar, M., Joh, T.H. Biochem. Pharmacol. (1988) [Pubmed]
  11. Ontogeny of phenylethanolamine N-methyltransferase- and tyrosine hydroxylase-like immunoreactivity in presumptive adrenaline neurones of the foetal rat central nervous system. Foster, G.A., Schultzberg, M., Goldstein, M., Hökfelt, T. J. Comp. Neurol. (1985) [Pubmed]
  12. A single transmitter regulates gene expression through two separate mechanisms: cholinergic regulation of phenylethanolamine N-methyltransferase mRNA via nicotinic and muscarinic pathways. Evinger, M.J., Ernsberger, P., Regunathan, S., Joh, T.H., Reis, D.J. J. Neurosci. (1994) [Pubmed]
  13. Pituitary adenylate cyclase activating polypeptide (PACAP) regulates expression of catecholamine biosynthetic enzyme genes in bovine adrenal chromaffin cells. Tönshoff, C., Hemmick, L., Evinger, M.J. J. Mol. Neurosci. (1997) [Pubmed]
  14. Nerve growth factor-mediated enzyme induction in primary cultures of bovine adrenal chromaffin cells: specificity and level of regulation. Acheson, A.L., Naujoks, K., Thoenen, H. J. Neurosci. (1984) [Pubmed]
  15. Induction of gene expression of the catecholamine-synthesizing enzymes by insulin-like growth factor-I. Hwang, O., Choi, H.J. J. Neurochem. (1995) [Pubmed]
  16. Short and long term regulation of catecholamine biosynthetic enzymes by angiotensin in cultured adrenal medullary cells. Molecular mechanisms and nature of second messenger systems. Stachowiak, M.K., Jiang, H.K., Poisner, A.M., Tuominen, R.K., Hong, J.S. J. Biol. Chem. (1990) [Pubmed]
  17. Potential inhibitors of S-adenosylmethionine-dependent methyltransferases. 3. Modifications of the sugar portion of S-adenosylhomocysteine. Borchardt, R.T., Wu, Y.S. J. Med. Chem. (1975) [Pubmed]
  18. Coordinate and differential regulation of proenkephalin A and PNMT mRNA expression in cultured bovine adrenal chromaffin cells: responses to secretory stimuli. Wan, D.C., Marley, P.D., Livett, B.G. Brain Res. Mol. Brain Res. (1991) [Pubmed]
  19. Peptide regulation of adrenal medullary function. Livett, B.G., Marley, P.D., Wan, D.C., Zhou, X.F. J. Neural Transm. Suppl. (1990) [Pubmed]
  20. Differential regulation of phenylethanolamine N-methyltransferase expression in two distinct subpopulations of bovine chromaffin cells. Cahill, A.L., Eertmoed, A.L., Mangoura, D., Perlman, R.L. J. Neurochem. (1996) [Pubmed]
  21. Determination of enzyme activity in single bovine adrenal medullary cells by separation of isotopically labeled catecholamines. Hsieh, S., Jorgenson, J.W. Anal. Chem. (1997) [Pubmed]
WikiGenes - Universities