The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

SEC6  -  Sec6p

Saccharomyces cerevisiae S288c

Synonyms: Exocyst complex component SEC6, YIL068C
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on SEC6

 

Biological context of SEC6

 

Anatomical context of SEC6

  • The SEC6 gene encodes a protein required for an event leading to fusion of post-Golgi vesicles with the plasma membrane in Saccharomyces cerevisiae cells [5].
  • Moreover, these sac1 suppressor properties also extended to sec6 and sec9 secretory vesicle defects [6].
  • Rho1p comigrated with post-Golgi transport vesicles during fractionation of P3 organelles from wild-type or sec6 cells [7].
  • Green fluorescent protein (GFP)-fusions of nearly every subunit of the mammalian Sec6/8 complex were expressed in Madin-Darby canine kidney (MDCK) cells, but they failed to assemble into a complex with endogenous proteins and localized in the cytosol [8].
  • However, in chc1/sec6 double mutants, CPY-GFP is present in internal structures, possibly endosomal membranes, that do not colocalize with the vacuole [9].
 

Associations of SEC6 with chemical compounds

 

Physical interactions of SEC6

  • These data indicate that the Sec8/15 complex contains Sec6 as a stable component [10].
 

Other interactions of SEC6

  • However, loss of sec15 does not cause cell lethality in contrast to loss of sec5 or sec6 [13].
  • The late secretory mutants sec1, sec4, and sec6 accumulate both vesicle populations, while neither is detected in wild-type cells, early sec mutants, or a sec13 sec6 double mutant [14].
  • Secretory mutants (sec1, sec6) of Saccharomyces cerevisiae accumulate large pools of secretory vesicles at the restrictive temperature (37 degrees C) because of a block in the delivery of vesicles to the cell surface [15].
  • Chitinase O-mannosylation was further examined in the temperature-sensitive secretion mutants sec18, sec7, and sec6 [16].
  • The chimaeric protein Jen1p-GFP is targeted to the plasma membrane via a Sec6-dependent process; upon treatment with glucose, it is endocytosed via END3 and targeted for degradation in the vacuole [17].
 

Analytical, diagnostic and therapeutic context of SEC6

References

  1. Sec6/8 complex is recruited to cell-cell contacts and specifies transport vesicle delivery to the basal-lateral membrane in epithelial cells. Grindstaff, K.K., Yeaman, C., Anandasabapathy, N., Hsu, S.C., Rodriguez-Boulan, E., Scheller, R.H., Nelson, W.J. Cell (1998) [Pubmed]
  2. Targeting vesicles to specific sites on the plasma membrane: the role of the sec6/8 complex. Hsu, S.C., Hazuka, C.D., Foletti, D.L., Scheller, R.H. Trends Cell Biol. (1999) [Pubmed]
  3. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. TerBush, D.R., Maurice, T., Roth, D., Novick, P. EMBO J. (1996) [Pubmed]
  4. Characterization of the Saccharomyces cerevisiae sec6-4 mutation and tools to create S. cerevisiae strains containing the sec6-4 allele. Lamping, E., Tanabe, K., Niimi, M., Uehara, Y., Monk, B.C., Cannon, R.D. Gene (2005) [Pubmed]
  5. SEC6 encodes an 85 kDa soluble protein required for exocytosis in yeast. Potenza, M., Bowser, R., Müller, H., Novick, P. Yeast (1992) [Pubmed]
  6. Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. Cleves, A.E., Novick, P.J., Bankaitis, V.A. J. Cell Biol. (1989) [Pubmed]
  7. The small GTP-binding protein Rho1p is localized on the Golgi apparatus and post-Golgi vesicles in Saccharomyces cerevisiae. McCaffrey, M., Johnson, J.S., Goud, B., Myers, A.M., Rossier, J., Popoff, M.R., Madaule, P., Boquet, P. J. Cell Biol. (1991) [Pubmed]
  8. The Sec6/8 complex in mammalian cells: characterization of mammalian Sec3, subunit interactions, and expression of subunits in polarized cells. Matern, H.T., Yeaman, C., Nelson, W.J., Scheller, R.H. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  9. Vps10p cycles between the TGN and the late endosome via the plasma membrane in clathrin mutants. Deloche, O., Schekman, R.W. Mol. Biol. Cell (2002) [Pubmed]
  10. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. TerBush, D.R., Novick, P. J. Cell Biol. (1995) [Pubmed]
  11. Mammalian exocyst complex is required for the docking step of insulin vesicle exocytosis. Tsuboi, T., Ravier, M.A., Xie, H., Ewart, M.A., Gould, G.W., Baldwin, S.A., Rutter, G.A. J. Biol. Chem. (2005) [Pubmed]
  12. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Hsu, S.C., Hazuka, C.D., Roth, R., Foletti, D.L., Heuser, J., Scheller, R.H. Neuron (1998) [Pubmed]
  13. Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components. Mehta, S.Q., Hiesinger, P.R., Beronja, S., Zhai, R.G., Schulze, K.L., Verstreken, P., Cao, Y., Zhou, Y., Tepass, U., Crair, M.C., Bellen, H.J. Neuron (2005) [Pubmed]
  14. Parallel secretory pathways to the cell surface in yeast. Harsay, E., Bretscher, A. J. Cell Biol. (1995) [Pubmed]
  15. ATP-dependent transport of organic anions in secretory vesicles of Saccharomyces cerevisiae. St-Pierre, M.V., Ruetz, S., Epstein, L.F., Gros, P., Arias, I.M. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  16. Chitinase is required for cell separation during growth of Saccharomyces cerevisiae. Kuranda, M.J., Robbins, P.W. J. Biol. Chem. (1991) [Pubmed]
  17. Utilization of green fluorescent protein as a marker for studying the expression and turnover of the monocarboxylate permease Jen1p of Saccharomyces cerevisiae. Paiva, S., Kruckeberg, A.L., Casal, M. Biochem. J. (2002) [Pubmed]
 
WikiGenes - Universities