The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Streptococcus oralis

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Streptococcus oralis


High impact information on Streptococcus oralis

  • Mutants in which either fimA or orf365 was replaced with a kanamycin resistance gene did not participate in type 2 fimbriae-mediated coaggregation with Streptococcus oralis 34 [6].
  • Isolates of genospecies 1 and 2, with deviating patterns of GalNAcbeta1-3Galalpha-O-ethyl-inhibitable coaggregation with Streptococcus oralis Ss34 and MPB1, were distinguished by a fimA central probe from genospecies 1 and 2, respectively [7].
  • Immunoblotting of sera from 12 neutropenic patients with Streptococcus oralis septicemia and 18 patients with endocarditis due to viridans group streptococci revealed immunodominant S. oralis antigens at 85 and 180 kDa [8].
  • In this study, we demonstrated that erythrogenic culture supernatant concentrates of representative strains (two Streptococcus mitis and two Streptococcus oralis), when injected intravenously, induced serum tumor necrosis factor alpha, interleukin-6 (IL-6), and gamma interferon in muramyldipeptide- or Propionibacterium acnes-primed C3H/HeN mice [9].
  • In the remaining five strains (Streptococcus gordonii G9B and 10558, S. sanguis 10556, and Streptococcus oralis 10557 and 72-41), interactions with multiple salivary components, including the low-molecular-weight salivary mucin, highly glycosylated proline-rich glycoproteins, and alpha-amylase, were detected [10].

Chemical compound and disease context of Streptococcus oralis


Biological context of Streptococcus oralis


Anatomical context of Streptococcus oralis


Gene context of Streptococcus oralis


Analytical, diagnostic and therapeutic context of Streptococcus oralis

  • METHOD: Discs of acrylic resin denture base materials (Paladon 65, polished and unpolished; Palapress; Microbase, polished and unpolished, and Triad VLC) were placed into Petri dishes with Schaedler's medium, inoculated with Streptococcus oralis 34 or Actinomyces viscosus T14V [23].


  1. Purification and characterization of chimeric human IgA1 and IgA2 expressed in COS and Chinese hamster ovary cells. Morton, H.C., Atkin, J.D., Owens, R.J., Woof, J.M. J. Immunol. (1993) [Pubmed]
  2. Mosaic pbpX genes of major clones of penicillin-resistant Streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Sibold, C., Henrichsen, J., König, A., Martin, C., Chalkley, L., Hakenbeck, R. Mol. Microbiol. (1994) [Pubmed]
  3. Linezolid in prophylaxis against experimental aortic valve endocarditis due to Streptococcus oralis or Enterococcus faecalis. Athanassopoulos, G., Pefanis, A., Sakka, V., Iliopoulos, D., Perrea, D., Giamarellou, H. Antimicrob. Agents Chemother. (2006) [Pubmed]
  4. Characterization of binding of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase to Porphyromonas gingivalis major fimbriae. Maeda, K., Nagata, H., Kuboniwa, M., Kataoka, K., Nishida, N., Tanaka, M., Shizukuishi, S. Infect. Immun. (2004) [Pubmed]
  5. Single-oral-dose azithromycin prophylaxis against experimental streptococcal or staphylococcal aortic valve endocarditis. Tsitsika, A., Pefanis, A., Perdikaris, G.S., Donta, I., Karayiannakos, P., Giamarellou, H. Antimicrob. Agents Chemother. (2000) [Pubmed]
  6. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Yeung, M.K., Donkersloot, J.A., Cisar, J.O., Ragsdale, P.A. Infect. Immun. (1998) [Pubmed]
  7. Actinomyces naeslundii displays variant fimP and fimA fimbrial subunit genes corresponding to different types of acidic proline-rich protein and beta-linked galactosamine binding specificity. Hallberg, K., Holm, C., Ohman, U., Strömberg, N. Infect. Immun. (1998) [Pubmed]
  8. Defining antibody targets in Streptococcus oralis infection. Burnie, J.P., Brooks, W., Donohoe, M., Hodgetts, S., al-Ghamdi, A., Matthews, R.C. Infect. Immun. (1996) [Pubmed]
  9. Cytokine induction by extracellular products of oral viridans group streptococci. Takada, H., Kawabata, Y., Tamura, M., Matsushita, K., Igarashi, H., Ohkuni, H., Todome, Y., Uchiyama, T., Kotani, S. Infect. Immun. (1993) [Pubmed]
  10. Adherence of oral streptococci to salivary glycoproteins. Murray, P.A., Prakobphol, A., Lee, T., Hoover, C.I., Fisher, S.J. Infect. Immun. (1992) [Pubmed]
  11. Complete structure of the cell surface polysaccharide of Streptococcus oralis C104: a 600-MHz NMR study. Abeygunawardana, C., Bush, C.A., Cisar, J.O. Biochemistry (1991) [Pubmed]
  12. Successful trovafloxacin prophylaxis against experimental streptococcal aortic valve endocarditis. Katsarolis, I., Pefanis, A., Iliopoulos, D., Siaperas, P., Karayiannakos, P., Giamarellou, H. Antimicrob. Agents Chemother. (2000) [Pubmed]
  13. Possible role of a choline-containing teichoic acid in the maintenance of normal cell shape and physiology in Streptococcus oralis. Horne, D.S., Tomasz, A. J. Bacteriol. (1993) [Pubmed]
  14. Effects of salivary film velocity on pH changes in an artificial plaque containing Streptococcus oralis, after exposure to sucrose. Macpherson, L.M., Dawes, C. J. Dent. Res. (1991) [Pubmed]
  15. Macrolide resistance mechanisms and in vitro susceptibility patterns of viridans group streptococci isolated from blood cultures. Ergin, A., Ercis, S., Hasçelik, G. J. Antimicrob. Chemother. (2006) [Pubmed]
  16. Characterization of genetic transformation in Streptococcus oralis NCTC 11427: expression of the pneumococcal amidase in S. oralis using a new shuttle vector. Ronda, C., García, J.L., López, R. Mol. Gen. Genet. (1988) [Pubmed]
  17. The cell wall polysaccharide of Streptococcus gordonii 38: structure and immunochemical comparison with the receptor polysaccharides of Streptococcus oralis 34 and Streptococcus mitis J22. Reddy, G.P., Abeygunawardana, C., Bush, C.A., Cisar, J.O. Glycobiology (1994) [Pubmed]
  18. Sequential deglycosylation and utilization of the N-linked, complex-type glycans of human alpha1-acid glycoprotein mediates growth of Streptococcus oralis. Byers, H.L., Tarelli, E., Homer, K.A., Beighton, D. Glycobiology (1999) [Pubmed]
  19. An in vitro stimulation of the effects of chewing sugar-free and sugar-containing chewing gums on pH changes in dental plaque. Macpherson, L.M., Dawes, C. J. Dent. Res. (1993) [Pubmed]
  20. Genetic approaches to the identification of the mitis group within the genus Streptococcus. Kawamura, Y., Whiley, R.A., Shu, S.E., Ezaki, T., Hardie, J.M. Microbiology (Reading, Engl.) (1999) [Pubmed]
  21. The oral microbiota of children undergoing liver transplantation. Sheehy, E.C., Beighton, D., Roberts, G.J. Oral Microbiol. Immunol. (2000) [Pubmed]
  22. Effect of nutrients on defined bacterial plaques and Streptococcus mutans C67-1 implantation in a model mouth. Donoghue, H.D., Perrons, C.J. Caries Res. (1991) [Pubmed]
  23. In vitro colonisation of acrylic resin denture base materials by Streptococcus oralis and Actinomyces viscosus. Kagermeier-Callaway, A.S., Willershausen, B., Frank, T., Stender, E. International dental journal. (2000) [Pubmed]
WikiGenes - Universities