The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

Bm180  -  basement membrane protein

Mus musculus

This record was discontinued.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bm180

 

High impact information on Bm180

 

Chemical compound and disease context of Bm180

 

Biological context of Bm180

  • Preparations of the 180-kDa phosphoprotein that are greater than 90% homogeneous by silver stain and by [35S]methionine protein autoradiography have specific high affinity 125I-labeled PDGF binding sites (equilibrium dissociation constant, 0.1 X 10(-9) M) [16].
  • The 180-kDa isoform, topo II beta, present in the isolated chromosomes in much smaller quantities, is also recognized by MPM-2 [17].
  • Mouse DNA polymerase alpha is made up of four subunits, the largest of which is the catalytic subunit with a molecular mass of 180 kDa (p180) [18].
  • The interaction of cortactin with this 180-kDa protein was confirmed by both in vitro and in vivo methods, and the SH3 domain of cortactin was found to direct this interaction [19].
  • PDGFs induced tyrosine phosphorylation of several proteins including a band at 180 kDa, the molecular weight of PDGF receptors [20].
 

Anatomical context of Bm180

  • BM180, a novel 180-kDa basement membrane protein enriched in guanidine-HCl extracts of lacrimal and parotid exocrine secretory glands, was immunopurified using the secretion inhibitory monoclonal antibody 3E12 [21].
  • Basement membrane collagen of the 3T3 cells was found deposited as apparently unprocessed procollagen alpha 1(IV) and alpha 2(IV) chains [22].
  • The loss of the 190-kDa B exon-dependent isoform during T-cell activation is accompanied by an increased production of a 180-kDa form, which does not contain the B exon-encoded sequence [23].
  • These data indicate that the 170- to 180-kDa glycoprotein is involved, directly or indirectly, in the drug transport mechanisms and the proliferation of multidrug-resistant tumor cell lines [24].
  • Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes [25].
 

Associations of Bm180 with chemical compounds

  • Both antibodies recognized the 170- to 180-kDa glycoprotein [24].
  • These data demonstrate that the 180-kDa substrate of the PDGF-stimulated tyrosine kinase is the PDGF receptor [16].
  • Within 4 hr after hormone exposure, extracts showed increased phosphotyrosine (P-Tyr) immunoreactivity at several bands, including 170- and 180-kDa; these bands were still apparent at 24 hr after E2 [26].
  • Analysis of the immunoprecipitated proteins on nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single protein of 180 kDa from estradiol-stimulated uterine media, whereas no detectable proteins were immunoprecipitated from media obtained from control uteri [27].
  • A monoclonal antibody against the 180-kDa protein was utilized to isolate the corresponding cDNA (LE-1) from a rat uterine luminal epithelial cell cDNA lambda gt11 expression library [27].
 

Physical interactions of Bm180

 

Enzymatic interactions of Bm180

  • In addition, immunoprecipitation of cell lysates with an antibody directed against the 85-kDa subunit of phosphatidylinositol 3-kinase (PI 3-kinase) co-precipitated a tyrosine-phosphorylated band of 180 kDa [30].
 

Other interactions of Bm180

  • Mouse Dnmt1 is a 180 kDa protein comprising the N-terminal regulatory domain, which covers 2/3 of the molecule, and the rest C-terminal catalytic domain [31].
  • The results of both techniques used in evaluating the expression of PSA-NCAM isoforms in our study indicate that the 180-kDa isoform is decreased in homozygous Splotch (Sp(2H)) embryos [32].
  • Transient expression of the murine Adamts13 cDNA in HEK 293 cells yielded a protein with a molecular weight of approximately 180 kDa which degraded recombinant murine VWF (rVWF) in a dose-dependent manner [33].
  • Nonimmune serum produced no band at the 180- kDa region, suggesting EGFR specificity of the 180-kDa band [34].
  • Basement membrane fragility underlies embryonic lethality in fukutin-null mice [35].
 

Analytical, diagnostic and therapeutic context of Bm180

References

  1. Cleavage of BP180, a 180-kDa bullous pemphigoid antigen, yields a 120-kDa collagenous extracellular polypeptide. Hirako, Y., Usukura, J., Uematsu, J., Hashimoto, T., Kitajima, Y., Owaribe, K. J. Biol. Chem. (1998) [Pubmed]
  2. Humoral autoimmunity to basement membrane antigens is regulated in C57BL/6 and MRL/MpJ mice transgenic for anti-laminin Ig receptors. Rudolph, E.H., Congdon, K.L., Sackey, F.N., Fitzsimons, M.M., Foster, M.H. J. Immunol. (2002) [Pubmed]
  3. Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. Schroeder, J.A., Thompson, M.C., Gardner, M.M., Gendler, S.J. J. Biol. Chem. (2001) [Pubmed]
  4. Basement membrane carbohydrate as a target for bacterial adhesion: binding of type I fimbriae of Salmonella enterica and Escherichia coli to laminin. Kukkonen, M., Raunio, T., Virkola, R., Lähteenmäki, K., Mäkelä, P.H., Klemm, P., Clegg, S., Korhonen, T.K. Mol. Microbiol. (1993) [Pubmed]
  5. Conformational changes in the spike glycoprotein of murine coronavirus are induced at 37 degrees C either by soluble murine CEACAM1 receptors or by pH 8. Zelus, B.D., Schickli, J.H., Blau, D.M., Weiss, S.R., Holmes, K.V. J. Virol. (2003) [Pubmed]
  6. Regulation of glomerular basement membrane collagen expression by LMX1B contributes to renal disease in nail patella syndrome. Morello, R., Zhou, G., Dreyer, S.D., Harvey, S.J., Ninomiya, Y., Thorner, P.S., Miner, J.H., Cole, W., Winterpacht, A., Zabel, B., Oberg, K.C., Lee, B. Nat. Genet. (2001) [Pubmed]
  7. Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic beta tumor cells. Perl, A.K., Dahl, U., Wilgenbus, P., Cremer, H., Semb, H., Christofori, G. Nat. Med. (1999) [Pubmed]
  8. Basement membrane and repair of injury to peripheral nerve: defining a potential role for macrophages, matrix metalloproteinases, and tissue inhibitor of metalloproteinases-1. La Fleur, M., Underwood, J.L., Rappolee, D.A., Werb, Z. J. Exp. Med. (1996) [Pubmed]
  9. Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. Brakebusch, C., Grose, R., Quondamatteo, F., Ramirez, A., Jorcano, J.L., Pirro, A., Svensson, M., Herken, R., Sasaki, T., Timpl, R., Werner, S., Fässler, R. EMBO J. (2000) [Pubmed]
  10. Basement membrane proteoglycan in various tissues: characterization using monoclonal antibodies to the Engelbreth-Holm-Swarm mouse tumor low density heparan sulfate proteoglycan. Kato, M., Koike, Y., Suzuki, S., Kimata, K. J. Cell Biol. (1988) [Pubmed]
  11. Demonstration of the molecular shape of BP180, a 180-kDa bullous pemphigoid antigen and its potential for trimer formation. Hirako, Y., Usukura, J., Nishizawa, Y., Owaribe, K. J. Biol. Chem. (1996) [Pubmed]
  12. Characterization of atrial-natriuretic-factor-receptor-coupled membrane guanylate cyclase from rat and mouse testes. Marala, R.B., Sharma, R.K. Biochem. J. (1988) [Pubmed]
  13. Cloning of the chicken insulin receptor substrate 1 gene. Taouis, M., Taylor, S.I., Reitman, M. Gene (1996) [Pubmed]
  14. Basement membrane components (matrigel) promote the tumorigenicity of human breast adenocarcinoma MCF7 cells and provide an in vivo model to assess the responsiveness of cells to estrogen. Noel, A., Simon, N., Raus, J., Foidart, J.M. Biochem. Pharmacol. (1992) [Pubmed]
  15. Basement membrane and the SIKVAV laminin-derived peptide promote tumor growth and metastases. Sweeney, T.M., Kibbey, M.C., Zain, M., Fridman, R., Kleinman, H.K. Cancer Metastasis Rev. (1991) [Pubmed]
  16. Purification of the platelet-derived growth factor receptor by using an anti-phosphotyrosine antibody. Daniel, T.O., Tremble, P.M., Frackelton, A.R., Williams, L.T. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  17. DNA topoisomerase II alpha is the major chromosome protein recognized by the mitotic phosphoprotein antibody MPM-2. Taagepera, S., Rao, P.N., Drake, F.H., Gorbsky, G.J. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  18. The second-largest subunit of the mouse DNA polymerase alpha-primase complex facilitates both production and nuclear translocation of the catalytic subunit of DNA polymerase alpha. Mizuno, T., Ito, N., Yokoi, M., Kobayashi, A., Tamai, K., Miyazawa, H., Hanaoka, F. Mol. Cell. Biol. (1998) [Pubmed]
  19. Identification of a novel cortactin SH3 domain-binding protein and its localization to growth cones of cultured neurons. Du, Y., Weed, S.A., Xiong, W.C., Marshall, T.D., Parsons, J.T. Mol. Cell. Biol. (1998) [Pubmed]
  20. PDGFs protect hippocampal neurons against energy deprivation and oxidative injury: evidence for induction of antioxidant pathways. Cheng, B., Mattson, M.P. J. Neurosci. (1995) [Pubmed]
  21. Immunological and partial sequence identity of mouse BM180 with wheat alpha-gliadin. Laurie, G.W., Ciclitira, P.J., Ellis, H.J., Pogany, G. Biochem. Biophys. Res. Commun. (1995) [Pubmed]
  22. Extracellular matrix proteins of human epidermal keratinocytes and feeder 3T3 cells. Alitalo, K., Kuismanen, E., Myllylä, R., Kiistala, U., Asko-Seljavaara, S., Vaheri, A. J. Cell Biol. (1982) [Pubmed]
  23. Changes in CD45 isoform expression accompany antigen-induced murine T-cell activation. Birkeland, M.L., Johnson, P., Trowbridge, I.S., Puré, E. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  24. Functional role for the 170- to 180-kDa glycoprotein specific to drug-resistant tumor cells as revealed by monoclonal antibodies. Hamada, H., Tsuruo, T. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  25. Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Haubst, N., Georges-Labouesse, E., De Arcangelis, A., Mayer, U., Götz, M. Development (2006) [Pubmed]
  26. Estradiol stimulates tyrosine phosphorylation of the insulin-like growth factor-1 receptor and insulin receptor substrate-1 in the uterus. Richards, R.G., DiAugustine, R.P., Petrusz, P., Clark, G.C., Sebastian, J. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  27. Estrogen regulation of tissue-specific expression of complement C3. Sundstrom, S.A., Komm, B.S., Ponce-de-Leon, H., Yi, Z., Teuscher, C., Lyttle, C.R. J. Biol. Chem. (1989) [Pubmed]
  28. Loss of basement membrane, receptor and cytoskeletal lattices in a laminin-deficient muscular dystrophy. Yurchenco, P.D., Cheng, Y.S., Campbell, K., Li, S. J. Cell. Sci. (2004) [Pubmed]
  29. Identification of an essential cis-element near the transcription start site for transcriptional activation of the proliferating cell nuclear antigen gene. Huang, D.Y., Prystowsky, M.B. J. Biol. Chem. (1996) [Pubmed]
  30. ADP-ribosylation of rho p21 inhibits lysophosphatidic acid-induced protein tyrosine phosphorylation and phosphatidylinositol 3-kinase activation in cultured Swiss 3T3 cells. Kumagai, N., Morii, N., Fujisawa, K., Nemoto, Y., Narumiya, S. J. Biol. Chem. (1993) [Pubmed]
  31. The Amino-Terminus of Mouse DNA Methyltransferase 1 Forms an Independent Domain and Binds to DNA with the Sequence Involving PCNA Binding Motif. Suetake, I., Hayata, D., Tajima, S. J. Biochem. (2006) [Pubmed]
  32. Changes in sialylation in homozygous Sp2H mouse mutant embryos. Glogarová, K., Buckiová, D. Birth defects research. Part A, Clinical and molecular teratology. (2004) [Pubmed]
  33. Cloning, expression and functional characterization of the full-length murine ADAMTS13. Bruno, K., Völkel, D., Plaimauer, B., Antoine, G., Pable, S., Motto, D.G., Lemmerhirt, H.L., Dorner, F., Zimmermann, K., Scheiflinger, F. J. Thromb. Haemost. (2005) [Pubmed]
  34. The role of epidermal growth factor receptor (EGFR) in male reproductive tract differentiation: stimulation of EGFR expression and inhibition of Wolffian duct differentiation with anti-EGFR antibody. Gupta, C. Endocrinology (1996) [Pubmed]
  35. Basement membrane fragility underlies embryonic lethality in fukutin-null mice. Kurahashi, H., Taniguchi, M., Meno, C., Taniguchi, Y., Takeda, S., Horie, M., Otani, H., Toda, T. Neurobiol. Dis. (2005) [Pubmed]
  36. Collagen XVIII is a basement membrane heparan sulfate proteoglycan. Halfter, W., Dong, S., Schurer, B., Cole, G.J. J. Biol. Chem. (1998) [Pubmed]
  37. Uteroglobin (UG) suppresses extracellular matrix invasion by normal and cancer cells that express the high affinity UG-binding proteins. Kundu, G.C., Mandal, A.K., Zhang, Z., Mantile-Selvaggi, G., Mukherjee, A.B. J. Biol. Chem. (1998) [Pubmed]
  38. Decreased expression of topoisomerase IIbeta in poly(ADP-ribose) polymerase-deficient cells. Canitrot, Y., de Murcia, G., Salles, B. Nucleic Acids Res. (1998) [Pubmed]
  39. Intestinal cells produce basement membrane proteins in vitro. Hahn, U., Schuppan, D., Hahn, E.G., Merker, H.J., Riecken, E.O. Gut (1987) [Pubmed]
  40. Basement membrane assembly and differentiation of cultured corneal cells: importance of culture environment and endothelial cell interaction. Zieske, J.D., Mason, V.S., Wasson, M.E., Meunier, S.F., Nolte, C.J., Fukai, N., Olsen, B.R., Parenteau, N.L. Exp. Cell Res. (1994) [Pubmed]
 
WikiGenes - Universities