The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Gluconacetobacter

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Gluconacetobacter

 

High impact information on Gluconacetobacter

 

Chemical compound and disease context of Gluconacetobacter

 

Anatomical context of Gluconacetobacter

 

Gene context of Gluconacetobacter

  • The results of DNA-DNA hybridizations, together with physiological and biochemical data, allowed genotypic and phenotypic differentiation between strains DST GL01T and DST GL02T and from the 11 validly published Gluconacetobacter species [3].
  • Periplasmic glucose oxidation (by way of a pyrrolo-quinoline-quinone [PQQ]-linked glucose dehydrogenase [GDH]) was observed in continuous cultures of Gluconacetobacter diazotrophicus regardless of the carbon source (glucose or gluconate) and the nitrogen source (N(2) or NH(3)) [15].

References

  1. Putative ABC transporter responsible for acetic acid resistance in Acetobacter aceti. Nakano, S., Fukaya, M., Horinouchi, S. Appl. Environ. Microbiol. (2006) [Pubmed]
  2. Isolation and characterization of the glnD gene of Gluconacetobacter diazotrophicus, encoding a putative uridylyltransferase/uridylyl-removing enzyme. Perlova, O., Nawroth, R., Zellermann, E.M., Meletzus, D. Gene (2002) [Pubmed]
  3. Description of Gluconacetobacter swingsii sp. nov. and Gluconacetobacter rhaeticus sp. nov., isolated from Italian apple fruit. Dellaglio, F., Cleenwerck, I., Felis, G.E., Engelbeen, K., Janssens, D., Marzotto, M. Int. J. Syst. Evol. Microbiol. (2005) [Pubmed]
  4. Aromatic amino acid aminotransferase activity and indole-3-acetic acid production by associative nitrogen-fixing bacteria. Pedraza, R.O., Ramírez-Mata, A., Xiqui, M.L., Baca, B.E. FEMS Microbiol. Lett. (2004) [Pubmed]
  5. Molecular cloning and expression in Escherichia coli of an exo-levanase gene from the endophytic bacterium Gluconacetobacter diazotrophicus SRT4. Menéndez, C., Hernández, L., Selman, G., Mendoza, M.F., Hevia, P., Sotolongo, M., Arrieta, J.G. Curr. Microbiol. (2002) [Pubmed]
  6. Role of the GGDEF protein family in Salmonella cellulose biosynthesis and biofilm formation. García, B., Latasa, C., Solano, C., García-del Portillo, F., Gamazo, C., Lasa, I. Mol. Microbiol. (2004) [Pubmed]
  7. A type II protein secretory pathway required for levansucrase secretion by Gluconacetobacter diazotrophicus. Arrieta, J.G., Sotolongo, M., Menéndez, C., Alfonso, D., Trujillo, L.E., Soto, M., Ramírez, R., Hernández, L. J. Bacteriol. (2004) [Pubmed]
  8. Indole-3-acetic acid biosynthesis is deficient in Gluconacetobacter diazotrophicus strains with mutations in cytochrome c biogenesis genes. Lee, S., Flores-Encarnación, M., Contreras-Zentella, M., Garcia-Flores, L., Escamilla, J.E., Kennedy, C. J. Bacteriol. (2004) [Pubmed]
  9. Energy generation by extracellular aldose oxidation in N(2)-fixing Gluconacetobacter diazotrophicus. Luna, M.F., Bernardelli, C.E., Mignone, C.F., Boiardi, J.L. Appl. Environ. Microbiol. (2002) [Pubmed]
  10. Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium isolated from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Franke, I.H., Fegan, M., Hayward, C., Leonard, G., Stackebrandt, E., Sly, L.I. Int. J. Syst. Bacteriol. (1999) [Pubmed]
  11. Direct incorporation of glucosamine and N-acetylglucosamine into exopolymers by Gluconacetobacter xylinus (=Acetobacter xylinum) ATCC 10245: production of chitosan-cellulose and chitin-cellulose exopolymers. Lee, J.W., Deng, F., Yeomans, W.G., Allen, A.L., Gross, R.A., Kaplan, D.L. Appl. Environ. Microbiol. (2001) [Pubmed]
  12. Real-time update of calibration model for better monitoring of batch processes using spectroscopy. Kornmann, H., Valentinotti, S., Marison, I., von Stockar, U. Biotechnol. Bioeng. (2004) [Pubmed]
  13. Further observations on the interaction between sugar cane and Gluconacetobacter diazotrophicus under laboratory and greenhouse conditions. James, E.K., Olivares, F.L., de Oliveira, A.L., dos Reis, F.B., da Silva, L.G., Reis, V.M. J. Exp. Bot. (2001) [Pubmed]
  14. Isolation from Gluconacetobacter diazotrophicus cell walls of specific receptors for sugarcane glycoproteins, which act as recognition factors. Blanco, Y., Arroyo, M., Legaz, M.E., Vicente, C. Journal of chromatography. A. (2005) [Pubmed]
  15. Glucose metabolism in batch and continuous cultures of Gluconacetobacter diazotrophicus PAL 3. Luna, M.F., Bernardelli, C.E., Galar, M.L., Boiardi, J.L. Curr. Microbiol. (2006) [Pubmed]
 
WikiGenes - Universities