The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Kidney Neoplasms

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Kidney Neoplasms

  • At the clonal level as determined by limiting dilution, 8 of 10 clones from melanoma TIL displayed cytotoxicity restricted to autologous tumor cells, while all 13 clones from renal cancer TIL equally lysed autologous and allogeneic tumor cells [1].
  • This analysis of renal cancer, with the recognition of three classes of surface antigens recognized by autologous sera, resembles the results of autologous typing of three other human malignancies: malignant melanoma, acute leukemia, and astrocytoma [2].
  • PTEN is a tumor suppressor gene mutated in various advanced human neoplasias, including glioblastomas and prostate, breast, endometrial, and kidney cancers [3].
  • Besides A431 epidermoid carcinoma cells, which are known to make large amounts of EGF receptor, cell lines from two ovarian cancers, two cervical cancers, and one kidney cancer were found to contain substantial amounts of receptor protein (11-22% of A431) [4].
  • Mutations in FLCN are also responsible for Birt-Hogg-Dubé (BHD) syndrome (a dominantly inherited disease characterized by benign skin tumors, PSP, and diverse types of renal cancer) and, rarely, are detected in sporadic renal and colorectal tumors [5].
 

High impact information on Kidney Neoplasms

 

Chemical compound and disease context of Kidney Neoplasms

  • PURPOSE: The purpose of this study was to quantify the risk of bladder and kidney cancer following cyclophosphamide therapy [10].
  • Two-dimensional polyacrylamide gel electrophoresis has been used to compare the Nonidet P-40 soluble, [3H]glucosamine-labeled glycoproteins of human kidney cancer cell lines and short-term cultures of normal kidney epithelia [11].
  • Because acetazolamide alone reduced invasiveness of these cancer cells in vitro, we conclude that the CAs overexpressed in these renal cancer cells contribute to invasiveness, at least in vitro, and suggest that CA inhibitors may also reduce invasiveness in other tumors that overexpress one or more CAs [12].
  • A possible correlation between these structures and the estrogen sensitivity of the kidney neoplasm is made [13].
  • Our results suggest that the molecular events that contribute to the development of distal nephron tumors are distinct from those associated with the etiology of proximal tubule renal cancers [14].
 

Biological context of Kidney Neoplasms

 

Anatomical context of Kidney Neoplasms

 

Gene context of Kidney Neoplasms

  • Through a subsequent positional cloning effort we found that this breakpoint targets a hitherto unidentified gene, designated DIRC2 (disrupted in renal cancer 2) [25].
  • The accumulated data derived from a series of experiments also demonstrates that FAA synergizes with interleukin 2 (IL-2) for the treatment of murine renal cancer [26].
  • The FHIT gene product is highly expressed in the cytoplasm of renal tubular epithelium and is down-regulated in kidney cancers [27].
  • Our data suggest the potential use of OKL38 in diagnosis, prognosis, and/or treatment of kidney cancer [28].
  • In renal cancer cells, the inactivation of the tumor suppressor protein von Hippel Lindau (VHL) leads to an increase in VPF/VEGF expression [29].
  • All VHL mutations linked to classical VHL disease compromise this pVHL function although some missense mutations result in a low risk of kidney cancer (type 2A VHL disease) while others result in a high risk (type 2B VHL disease) [30].
 

Analytical, diagnostic and therapeutic context of Kidney Neoplasms

References

  1. Autologous tumor-specific cytotoxic T lymphocytes in the infiltrate of human metastatic melanomas. Activation by interleukin 2 and autologous tumor cells, and involvement of the T cell receptor. Itoh, K., Platsoucas, C.D., Balch, C.M. J. Exp. Med. (1988) [Pubmed]
  2. Cell surface antigens of human renal cancer defined by autologous typing. Ueda, R., Shiku, H., Pfreundschuh, M., Takahashi, T., Li, L.T., Whitmore, W.F., Oettgen, H.F., Old, L.J. J. Exp. Med. (1979) [Pubmed]
  3. Early onset of neoplasia in the prostate and skin of mice with tissue-specific deletion of Pten. Backman, S.A., Ghazarian, D., So, K., Sanchez, O., Wagner, K.U., Hennighausen, L., Suzuki, A., Tsao, M.S., Chapman, W.B., Stambolic, V., Mak, T.W. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  4. Characterization of epidermal growth factor receptor gene expression in malignant and normal human cell lines. Xu, Y.H., Richert, N., Ito, S., Merlino, G.T., Pastan, I. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  5. A 4-bp deletion in the Birt-Hogg-Dubé gene (FLCN) causes dominantly inherited spontaneous pneumothorax. Painter, J.N., Tapanainen, H., Somer, M., Tukiainen, P., Aittomäki, K. Am. J. Hum. Genet. (2005) [Pubmed]
  6. Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Thomas, G.V., Tran, C., Mellinghoff, I.K., Welsbie, D.S., Chan, E., Fueger, B., Czernin, J., Sawyers, C.L. Nat. Med. (2006) [Pubmed]
  7. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Golumbek, P.T., Lazenby, A.J., Levitsky, H.I., Jaffee, L.M., Karasuyama, H., Baker, M., Pardoll, D.M. Science (1991) [Pubmed]
  8. Potential cancer therapy with the fragile histidine triad gene: review of the preclinical studies. Ishii, H., Dumon, K.R., Vecchione, A., Fong, L.Y., Baffa, R., Huebner, K., Croce, C.M. JAMA (2001) [Pubmed]
  9. Calcium channel blockers and the risk of cancer. Rosenberg, L., Rao, R.S., Palmer, J.R., Strom, B.L., Stolley, P.D., Zauber, A.G., Warshauer, M.E., Shapiro, S. JAMA (1998) [Pubmed]
  10. Bladder and kidney cancer following cyclophosphamide therapy for non-Hodgkin's lymphoma. Travis, L.B., Curtis, R.E., Glimelius, B., Holowaty, E.J., Van Leeuwen, F.E., Lynch, C.F., Hagenbeek, A., Stovall, M., Banks, P.M., Adami, J. J. Natl. Cancer Inst. (1995) [Pubmed]
  11. Comparison of [3H]glucosamine-labeled glycoproteins from human renal cancer and normal kidney epithelial cell cultures by two-dimensional polyacrylamide gel electrophoresis. Ogata, S., Ueda, R., Lloyd, K.O. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  12. Carbonic anhydrase inhibitor suppresses invasion of renal cancer cells in vitro. Parkkila, S., Rajaniemi, H., Parkkila, A.K., Kivela, J., Waheed, A., Pastorekova, S., Pastorek, J., Sly, W.S. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  13. Junctional specialization in estrogen-induced renal adenocarcinomas of the golden hamster. Letourneau, R.J., Li, J.J., Rosen, S., Villee, C.A. Cancer Res. (1975) [Pubmed]
  14. Distal nephron renal tumors: microsatellite allelotype. Polascik, T.J., Cairns, P., Epstein, J.I., Fuzesi, L., Ro, J.Y., Marshall, F.F., Sidransky, D., Schoenberg, M. Cancer Res. (1996) [Pubmed]
  15. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Kamura, T., Koepp, D.M., Conrad, M.N., Skowyra, D., Moreland, R.J., Iliopoulos, O., Lane, W.S., Kaelin, W.G., Elledge, S.J., Conaway, R.C., Harper, J.W., Conaway, J.W. Science (1999) [Pubmed]
  16. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M., Krek, W. Genes Dev. (1999) [Pubmed]
  17. Vascular endothelial growth factor platelet counts and renal cancer. Gunsilius, E., Petzer, A.L., Gastl, G. Lancet (1999) [Pubmed]
  18. Jade-1, a candidate renal tumor suppressor that promotes apoptosis. Zhou, M.I., Foy, R.L., Chitalia, V.C., Zhao, J., Panchenko, M.V., Wang, H., Cohen, H.T. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  19. Cloning of an Alpha-TFEB fusion in renal tumors harboring the t(6;11)(p21;q13) chromosome translocation. Davis, I.J., Hsi, B.L., Arroyo, J.D., Vargas, S.O., Yeh, Y.A., Motyckova, G., Valencia, P., Perez-Atayde, A.R., Argani, P., Ladanyi, M., Fletcher, J.A., Fisher, D.E. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  20. Human renal antigen defined by a murine monoclonal antibody. Tagliabue, E., Canevari, S., Menard, S., Fossati, G., Balsari, A., Della Torre, G., Colnaghi, M.I. J. Natl. Cancer Inst. (1984) [Pubmed]
  21. The netrin-1 receptors UNC5H are putative tumor suppressors controlling cell death commitment. Thiebault, K., Mazelin, L., Pays, L., Llambi, F., Joly, M.O., Scoazec, J.Y., Saurin, J.C., Romeo, G., Mehlen, P. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  22. Adjuvant immunotherapy of established murine renal cancer by interleukin 2-stimulated cytotoxic lymphocytes. Salup, R.R., Wiltrout, R.H. Cancer Res. (1986) [Pubmed]
  23. von Hippel-Lindau tumor suppressor protein regulates the assembly of intercellular junctions in renal cancer cells through hypoxia-inducible factor-independent mechanisms. Calzada, M.J., Esteban, M.A., Feijoo-Cuaresma, M., Castellanos, M.C., Naranjo-Suárez, S., Temes, E., Méndez, F., Yánez-Mo, M., Ohh, M., Landázuri, M.O. Cancer Res. (2006) [Pubmed]
  24. WT1 expression does not disrupt myogenic differentiation in C2C12 murine myoblasts or in human rhabdomyosarcoma. Tiffin, N., Williams, R.D., Robertson, D., Hill, S., Shipley, J., Pritchard-Jones, K. Exp. Cell Res. (2003) [Pubmed]
  25. Disruption of a novel MFS transporter gene, DIRC2, by a familial renal cell carcinoma-associated t(2;3)(q35;q21). Bodmer, D., Eleveld, M., Kater-Baats, E., Janssen, I., Janssen, B., Weterman, M., Schoenmakers, E., Nickerson, M., Linehan, M., Zbar, B., van Kessel, A.G. Hum. Mol. Genet. (2002) [Pubmed]
  26. Correlation between in vivo induction of cytokine gene expression by flavone acetic acid and strict dose dependency and therapeutic efficacy against murine renal cancer. Mace, K.F., Hornung, R.L., Wiltrout, R.H., Young, H.A. Cancer Res. (1990) [Pubmed]
  27. The FHIT gene product is highly expressed in the cytoplasm of renal tubular epithelium and is down-regulated in kidney cancers. Xiao, G.H., Jin, F., Klein-Szanto, A.J., Goodrow, T.L., Linehan, M.W., Yeung, R.S. Am. J. Pathol. (1997) [Pubmed]
  28. Genomic structure of human OKL38 gene and its differential expression in kidney carcinogenesis. Ong, C.K., Ng, C.Y., Leong, C., Ng, C.P., Foo, K.T., Tan, P.H., Huynh, H. J. Biol. Chem. (2004) [Pubmed]
  29. Role of elongin-binding domain of von Hippel Lindau gene product on HuR-mediated VPF/VEGF mRNA stability in renal cell carcinoma. Datta, K., Mondal, S., Sinha, S., Li, J., Wang, E., Knebelmann, B., Karumanchi, S.A., Mukhopadhyay, D. Oncogene (2005) [Pubmed]
  30. Hypoxia-inducible factor linked to differential kidney cancer risk seen with type 2A and type 2B VHL mutations. Li, L., Zhang, L., Zhang, X., Yan, Q., Minamishima, Y.A., Olumi, A.F., Mao, M., Bartz, S., Kaelin, W.G. Mol. Cell. Biol. (2007) [Pubmed]
  31. Limitations of DNA histogram analysis by flow cytometry as a method of predicting chemosensitivity in a rat renal cancer model. deVere White, R., Deitch, A.D., Olsson, C.A. Cancer Res. (1983) [Pubmed]
  32. Differential expression of the enzyme that esterifies retinol, lecithin:retinol acyltransferase, in subtypes of human renal cancer and normal kidney. Zhan, H.C., Gudas, L.J., Bok, D., Rando, R., Nanus, D.M., Tickoo, S.K. Clin. Cancer Res. (2003) [Pubmed]
  33. Flavopiridol metabolism in cancer patients is associated with the occurrence of diarrhea. Innocenti, F., Stadler, W.M., Iyer, L., Ramírez, J., Vokes, E.E., Ratain, M.J. Clin. Cancer Res. (2000) [Pubmed]
  34. Expression of retinoic acid receptor beta in human renal cell carcinomas correlates with sensitivity to the antiproliferative effects of 13-cis-retinoic acid. Hoffman, A.D., Engelstein, D., Bogenrieder, T., Papandreou, C.N., Steckelman, E., Dave, A., Motzer, R.J., Dmitrovsky, E., Albino, A.P., Nanus, D.M. Clin. Cancer Res. (1996) [Pubmed]
  35. Soluble Tie2 and Flt1 extracellular domains in serum of patients with renal cancer and response to antiangiogenic therapy. Harris, A.L., Reusch, P., Barleon, B., Hang, C., Dobbs, N., Marme, D. Clin. Cancer Res. (2001) [Pubmed]
 
WikiGenes - Universities