The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

PubChem13287     cyclohexane-1,2-dione

Synonyms: SureCN33935, CHEMBL189727, ACMC-1BH8D, CCRIS 6296, AG-D-13473, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of NSC 32950


High impact information on NSC 32950


Biological context of NSC 32950

  • Identification of arginyl residues located at the ATP binding site of sarcoplasmic reticulum Ca2+-ATPase. Modification with 1,2-cyclohexanedione [10].
  • Conversely, this binding was decreased with proteolytic fragmentation of IgG, high ionic strength (at pH above 4), or temperatures above 4 degrees C. Chemical modification of IgG by acetylation, formalinization, carbamylation, or reaction with 1,2-cyclohexanedione significantly decreased these interactions [11].
  • Reaction of 1,2-cyclohexanedione with kringle 1 was found to rapidly abolish the fibrin-Sepharose affinity of the fragment, whereas the affinity for lysine-Sepharose was lost at a significantly slower rate [12].
  • The flavoenzyme pig kidney general acyl-CoA dehydrogenase (EC is inactivated by cyclohexane-1,2-dione in borate buffer in a reaction that exhibits pseudo-first-order kinetics [13].
  • The complete amino acid sequence of the alpha chain of the dimeric sarcoplasmic Ca2+-binding protein (SCP-I = alpha 2) from crayfish (Astacus leptodactylus) has been determined by partial automatic sequencing of the peptides derived from tryptic digests of the protein after citraconylation or treatment with 1,2-cyclohexanedione [14].

Anatomical context of NSC 32950


Associations of NSC 32950 with other chemical compounds


Gene context of NSC 32950


Analytical, diagnostic and therapeutic context of NSC 32950


  1. Evidence for an essential arginine residue in the active site of Escherichia coli 2-keto-4-hydroxyglutarate aldolase. Modification with 1,2-cyclohexanedione. Vlahos, C.J., Ghalambor, M.A., Dekker, E.E. J. Biol. Chem. (1985) [Pubmed]
  2. Porcine pancreatic lipase. Sequence of the first 234 amino acids of the peptide chain. Bianchetta, J.D., Bidaud, J., Guidoni, A.A., Bonicel, J.J., Rovery, M. Eur. J. Biochem. (1979) [Pubmed]
  3. Inhibition of Clostridium difficile toxin A and B by 1,2-cyclohexanedione modification of an arginine residue. Balfanz, J., Rautenberg, P. Biochem. Biophys. Res. Commun. (1989) [Pubmed]
  4. Modification of arginine in sea anemone toxin RTX-III from Radianthus macrodactylus. Mahnir, V.M., Kozlovskaya, E.P., Elyakov, G.B. Toxicon (1989) [Pubmed]
  5. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein. Kokkonen, J.O., Kovanen, P.T. Proc. Natl. Acad. Sci. U.S.A. (1987) [Pubmed]
  6. Modification of arginine-198 in sarcoplasmic reticulum Ca2+-ATPase by 1,2-cyclohexanedione causes inhibition of formation of the phosphoenzyme intermediate from inorganic phosphate. Saino, T., Daiho, T., Kanazawa, T. J. Biol. Chem. (1997) [Pubmed]
  7. Apolipoprotein E effectively inhibits lipoprotein lipase-mediated lipolysis of chylomicron-like triglyceride-rich lipid emulsions in vitro and in vivo. Rensen, P.C., van Berkel, T.J. J. Biol. Chem. (1996) [Pubmed]
  8. Arginine residues of the globular regions of human C1q involved in the interaction with immunoglobulin G. Marqués, G., Antón, L.C., Barrio, E., Sánchez, A., Ruiz, S., Gavilanes, F., Vivanco, F. J. Biol. Chem. (1993) [Pubmed]
  9. Lactoferrin uptake by the rat liver. Characterization of the recognition site and effect of selective modification of arginine residues. Ziere, G.J., van Dijk, M.C., Bijsterbosch, M.K., van Berkel, T.J. J. Biol. Chem. (1992) [Pubmed]
  10. Identification of arginyl residues located at the ATP binding site of sarcoplasmic reticulum Ca2+-ATPase. Modification with 1,2-cyclohexanedione. Kimura, K., Suzuki, H., Daiho, T., Yamasaki, K., Kanazawa, T. J. Biol. Chem. (1996) [Pubmed]
  11. Nonimmunospecific protein-protein interactions of IgG: studies of the binding of IgG to IgG immunoadsorbents. Nardella, F.A., Mannik, M. J. Immunol. (1978) [Pubmed]
  12. The fibrin-binding site of human plasminogen. Arginines 32 and 34 are essential for fibrin affinity of the kringle 1 domain. Váli, Z., Patthy, L. J. Biol. Chem. (1984) [Pubmed]
  13. Modification of an arginine residue in pig kidney general acyl-coenzyme A dehydrogenase by cyclohexane-1,2-dione. Jiang, Z.Y., Thorpe, C. Biochem. J. (1982) [Pubmed]
  14. Complete amino acid sequence of the sarcoplasmic calcium-binding protein (SCP-I) from crayfish (Astacus leptodactylus). Jauregui-Adell, J., Wnuk, W., Cox, J.A. FEBS Lett. (1989) [Pubmed]
  15. Effects of cholestyramine on receptor-mediated plasma clearance and tissue uptake of human low density lipoproteins in the rabbit. Slater, H.R., Packard, C.J., Bicker, S., Shepherd, J. J. Biol. Chem. (1980) [Pubmed]
  16. Measurement of receptor-independent lipoprotein catabolism using 1,2 cyclohexanedione-modified low density lipoprotein. Slater, H.R., Packard, C.J., Shepherd, J. J. Lipid Res. (1982) [Pubmed]
  17. Receptor-mediated low density lipoprotein catabolism in man. Shepherd, J., Bicker, S., Lorimer, A.R., Packard, C.J. J. Lipid Res. (1979) [Pubmed]
  18. The effects of native and modified bovine serum albumin on the permeability of frog mesenteric capillaries. Michel, C.C., Phillips, M.E., Turner, M.R. J. Physiol. (Lond.) (1985) [Pubmed]
  19. Inhibition of anion transport across red blood cells with 1,2-cyclohexanedione. Zaki, L. Biochem. Biophys. Res. Commun. (1981) [Pubmed]
  20. The receptor-binding domain of human apolipoprotein E. Binding of apolipoprotein E fragments. Innerarity, T.L., Friedlander, E.J., Rall, S.C., Weisgraber, K.H., Mahley, R.W. J. Biol. Chem. (1983) [Pubmed]
  21. Chemical modification by pyridoxal 5'-phosphate and cyclohexane-1,2-dione indicates that Lys-7 and Arg-10 are involved in the p2 phosphate-binding subsite of bovine pancreatic ribonuclease A. Richardson, R.M., Parés, X., Cuchillo, C.M. Biochem. J. (1990) [Pubmed]
  22. Differences in the active site environment of Aspergillus ficuum phytases. Ullah, A.H., Sethumadhavan, K. Biochem. Biophys. Res. Commun. (1998) [Pubmed]
  23. Purification and properties of two oxidoreductases catalyzing the enantioselective reduction of diacetyl and other diketones from baker's yeast. Heidlas, J., Tressl, R. Eur. J. Biochem. (1990) [Pubmed]
  24. Novel biscapped and monocapped tris(dioxime) Mn(II) complexes: x-ray crystal structure of the first cationic tris(dioxime) Mn(II) complex [Mn(CDOH)3BPh]OH (CDOH2= 1,2-cyclohexanedione dioxime). Hsieh, W.Y., Liu, S. Inorganic chemistry. (2006) [Pubmed]
  25. Modification of apolipoprotein C-II with 1,2-cyclohexanedione and 2,3-butanedione. Role of arginine in the activation of lipoprotein lipase. Holdsworth, G., Noel, J.G., Stedje, K., Shinomiya, M., Jackson, R.L. Biochim. Biophys. Acta (1984) [Pubmed]
  26. Identification of essential arginine residue(s) for Mg-ATP binding of human argininosuccinate synthetase. Isashiki, Y., Noda, T., Kobayashi, K., Sase, M., Saheki, T., Titani, K. Protein Seq. Data Anal. (1989) [Pubmed]
  27. Reactivity of D-amino acid oxidase with 1,2-cyclohexanedione: evidence for one arginine in the substrate-binding site. Ferti, C., Curti, B., Simonetta, M.P., Ronchi, S., Galliano, M., Minchiotti, L. Eur. J. Biochem. (1981) [Pubmed]
  28. Stimulation of bovine brain phospholipase C activity by myelin basic protein requires arginyl residues in peptide linkage. Tompkins, T.A., Moscarello, M.A. Arch. Biochem. Biophys. (1993) [Pubmed]
  29. Semiconductor surface-induced 1,3-hydrogen shift: the role of covalent vs zwitterionic character. Schwartz, M.P., Barlow, D.E., Russell, J.N., Weidkamp, K.P., Butler, J.E., D'Evelyn, M.P., Hamers, R.J. J. Am. Chem. Soc. (2006) [Pubmed]
  30. Determination of arginine in the reactive site of proteinase inhibitors by selective and reversible derivatization of the arginine side chain. Dietl, T., Tschesche, H. Hoppe-Seyler's Z. Physiol. Chem. (1976) [Pubmed]
WikiGenes - Universities