The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Astacoidea

  • Four large neurons in the cerebral ganglion of the crayfish and crab label selectively with a monoclonal antibody raised against substance P [1].
  • The three-dimensional structures of the zinc endopeptidases human neutrophil collagenase, adamalysin II from rattle snake venom, alkaline proteinase from Pseudomonas aeruginosa, and astacin from crayfish are topologically similar, with respect to a five-stranded beta-sheet and three alpha-helices arranged in typical sequential order [2].
  • Furthermore, the hemagglutinating activity in the crayfish plasma could be specifically inhibited by lipopolysaccharide from E. coli K-235, which might indicate a recognition role for this hemagglutinin [3].
  • Pertussis toxin does not affect the time course of quantal release in crayfish and mouse muscle, but has other post- and presynaptic effects, especially on adenosine autoreceptors [4].
  • Toxicity of fipronil and its degradation products to Procambarus sp.: field and laboratory studies [5].

Psychiatry related information on Astacoidea


High impact information on Astacoidea


Chemical compound and disease context of Astacoidea


Biological context of Astacoidea


Anatomical context of Astacoidea


Associations of Astacoidea with chemical compounds

  • If a homogeneous preparation of crayfish proPO were incubated with a homogeneous sample of the proPO activating enzyme, a serine proteinase, the cleavage of proPO by this trypsin-like enzyme was found to occur between Arg-176 and Thr-177 [28].
  • The difference does not confute the hypothesis that glutamate is the natural transmitter substance at the crayfish NMJ, notwithstanding the fact that the action of the transmitter candidate on the postsynaptic membrane must be identical in every respect with that of the transmitter [18].
  • Neuropeptide proctolin in postural motoneurons of the crayfish [29].
  • Adenylate cyclase system is essential for long-term facilitation at the crayfish neuromuscular junction [30].
  • Adenosine, AMP, ADP, and ATP were tested for their ability to modulate evoked quantal transmitter release at excitor-opener nerve terminals in the crayfish walking leg [31].

Gene context of Astacoidea


Analytical, diagnostic and therapeutic context of Astacoidea


  1. Substance P antibody reveals homologous neurons with axon terminals among somata in the crayfish and crab brain. Sandeman, R.E., Sandeman, D.C., Watson, A.H. J. Comp. Neurol. (1990) [Pubmed]
  2. The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Stöcker, W., Grams, F., Baumann, U., Reinemer, P., Gomis-Rüth, F.X., McKay, D.B., Bode, W. Protein Sci. (1995) [Pubmed]
  3. Isolation and characterization of a hemagglutinin with affinity for lipopolysaccharides from plasma of the crayfish Pacifastacus leniusculus. Kopácek, P., Grubhoffer, L., Söderhäll, K. Dev. Comp. Immunol. (1993) [Pubmed]
  4. Pertussis toxin does not affect the time course of quantal release in crayfish and mouse muscle, but has other post- and presynaptic effects, especially on adenosine autoreceptors. Schramm, M., Dudel, J. Neurosci. Lett. (2001) [Pubmed]
  5. Toxicity of fipronil and its degradation products to Procambarus sp.: field and laboratory studies. Schlenk, D., Huggett, D.B., Allgood, J., Bennett, E., Rimoldi, J., Beeler, A.B., Block, D., Holder, A.W., Hovinga, R., Bedient, P. Arch. Environ. Contam. Toxicol. (2001) [Pubmed]
  6. Chronic alterations in serotonin function: dynamic neurochemical properties in agonistic behavior of the crayfish, Orconectes rusticus. Panksepp, J.B., Huber, R. J. Neurobiol. (2002) [Pubmed]
  7. Heart rate within male crayfish: social interactions and effects of 5-HT. Listerman, L.R., Deskins, J., Bradacs, H., Cooper, R.L. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. (2000) [Pubmed]
  8. The effect of social experience on serotonergic modulation of the escape circuit of crayfish. Yeh, S.R., Fricke, R.A., Edwards, D.H. Science (1996) [Pubmed]
  9. Acetylcholine and GABA mediate opposing actions on neuronal chloride channels in crayfish. Pfeiffer-Linn, C., Glantz, R.M. Science (1989) [Pubmed]
  10. 270K microtubule-associated protein cross-reacting with anti-MAP2 IgG in the crayfish peripheral nerve axon. Hirokawa, N. J. Cell Biol. (1986) [Pubmed]
  11. Reduced facilitation and vesicular uptake in crustacean and mammalian neuromuscular junction by T-588, a neuroprotective compound. Hirata, K., Nakagawa, M., Urbano, F.J., Rosato-Siri, M.D., Moreira, J.E., Uchitel, O.D., Sugimori, M., Llinás, R. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  12. The crayfish plasma clotting protein: a vitellogenin-related protein responsible for clot formation in crustacean blood. Hall, M., Wang, R., van Antwerpen, R., Sottrup-Jensen, L., Söderhäll, K. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  13. GABA-ergic neurons in the crayfish nervous system: an immunocytochemical census of the segmental ganglia and stomatogastric system. Mulloney, B., Hall, W.M. J. Comp. Neurol. (1990) [Pubmed]
  14. Feedforward afferent excitation of peripheral inhibitors in the crayfish escape system. Takahata, M., Wine, J.J. J. Neurophysiol. (1987) [Pubmed]
  15. The mechanism of action of diphenylhydantoin on invertebrate neurons. II. Effects on synaptic mechanisms. Ayala, G.F., Johnston, D., Lin, S., Dichter, H.N. Brain Res. (1977) [Pubmed]
  16. Nitrite toxicity to crayfish, Astacus leptodactylus, the effects of sublethal nitrite exposure on hemolymph nitrite, total hemocyte counts, and hemolymph glucose. Yildiz, H.Y., Benli, A.C. Ecotoxicol. Environ. Saf. (2004) [Pubmed]
  17. Dopaminergic and enkephalinergic involvement in the regulation of blood glucose in the red swamp crayfish, Procambarus clarkii. Sarojini, R., Nagabhushanam, R., Fingerman, M. Gen. Comp. Endocrinol. (1995) [Pubmed]
  18. Pharmacology of the glutamate receptor. Shinozaki, H. Prog. Neurobiol. (1988) [Pubmed]
  19. Purification and characterization of a beta-1,3-glucan binding protein from plasma of the crayfish Pacifastacus leniusculus. Duvic, B., Söderhäll, K. J. Biol. Chem. (1990) [Pubmed]
  20. Interactions of phencyclidine with crayfish muscle membranes. Sensitivity to calcium channel antagonists and other drugs. El-Fakahany, E.E., Eldefrawi, A.T., Murphy, D.L., Aguayo, L.G., Triggle, D.J., Albuquerque, E.X., Eldefrawi, M.E. Mol. Pharmacol. (1984) [Pubmed]
  21. Regulation of glutamate carboxypeptidase II hydrolysis of N-acetylaspartylglutamate (NAAG) in crayfish nervous tissue is mediated by glial glutamate and acetylcholine receptors. Urazaev, A.K., Grossfeld, R.M., Lieberman, E.M. J. Neurochem. (2005) [Pubmed]
  22. L-[3H]glutamate binding to a membrane preparation from crayfish muscle. Syvertsen, C., Fonnum, F. J. Neurochem. (1989) [Pubmed]
  23. Regulation of synaptic vesicle recycling by calcium and serotonin. Wang, C., Zucker, R.S. Neuron (1998) [Pubmed]
  24. Acetylcholine in the crayfish optic lobe: concentration profile and cellular localization. Wang-Bennett, L.T., Pfeiffer, C., Arnold, J., Glantz, R.M. J. Neurosci. (1989) [Pubmed]
  25. Lanthanum penetration in crayfish nervous system: observations on intact and 'desheathed' preparations. Lane, N.J., Swales, L.S., Abbott, N.J. J. Cell. Sci. (1977) [Pubmed]
  26. A cell-surface superoxide dismutase is a binding protein for peroxinectin, a cell-adhesive peroxidase in crayfish. Johansson, M.W., Holmblad, T., Thörnqvist, P.O., Cammarata, M., Parrinello, N., Söderhäll, K. J. Cell. Sci. (1999) [Pubmed]
  27. Dark regeneration of rhodopsin in crayfish photoreceptors. Cronin, T.W., Goldsmith, T.H. J. Gen. Physiol. (1984) [Pubmed]
  28. cDNA cloning of prophenoloxidase from the freshwater crayfish Pacifastacus leniusculus and its activation. Aspán, A., Huang, T.S., Cerenius, L., Söderhäll, K. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  29. Neuropeptide proctolin in postural motoneurons of the crayfish. Bishop, C.A., Wine, J.J., O'Shea, M. J. Neurosci. (1984) [Pubmed]
  30. Adenylate cyclase system is essential for long-term facilitation at the crayfish neuromuscular junction. Dixon, D., Atwood, H.L. J. Neurosci. (1989) [Pubmed]
  31. Extracellular ATP modulates calcium uptake and transmitter release at the neuromuscular junction. Lindgren, C.A., Smith, D.O. J. Neurosci. (1987) [Pubmed]
  32. Crustacean frequenins: molecular cloning and differential localization at neuromuscular junctions. Jeromin, A., Shayan, A.J., Msghina, M., Roder, J., Atwood, H.L. J. Neurobiol. (1999) [Pubmed]
  33. An atypical iron-responsive element (IRE) within crayfish ferritin mRNA and an iron regulatory protein 1 (IRP1)-like protein from crayfish hepatopancreas. Huang, T.S., Melefors, O., Lind, M.I., Söderhäll, K. Insect Biochem. Mol. Biol. (1999) [Pubmed]
  34. Light-regulated localization of the beta-subunit of Gq-type G-protein in the crayfish photoreceptors. Terakita, A., Takahama, H., Hariyama, T., Suzuki, T., Tsukahara, Y. J. Comp. Physiol. A (1998) [Pubmed]
  35. Expression of engrailed during segmentation in grasshopper and crayfish. Patel, N.H., Kornberg, T.B., Goodman, C.S. Development (1989) [Pubmed]
  36. Primary structure of crayfish visual pigment deduced from cDNA. Hariyama, T., Ozaki, K., Tokunaga, F., Tsukahara, Y. FEBS Lett. (1993) [Pubmed]
  37. Immobilization of sodium channel gating charge in crayfish giant axons by the insecticide fenvalerate. Salgado, V.L., Narahashi, T. Mol. Pharmacol. (1993) [Pubmed]
  38. Activation mechanism of pro-astacin: role of the pro-peptide, tryptic and autoproteolytic cleavage and importance of precise amino-terminal processing. Yiallouros, I., Kappelhoff, R., Schilling, O., Wegmann, F., Helms, M.W., Auge, A., Brachtendorf, G., Berkhoff, E.G., Beermann, B., Hinz, H.J., König, S., Peter-Katalinic, J., Stöcker, W. J. Mol. Biol. (2002) [Pubmed]
  39. Argiopine blocks glutamate-activated single-channel currents on crayfish muscle by two mechanisms. Antonov, S.M., Dudel, J., Franke, C., Hatt, H. J. Physiol. (Lond.) (1989) [Pubmed]
  40. Glutamine cycle enzymes in the crayfish giant nerve fiber: implications for axon-to-glia signaling. McKinnon, E., Hargittai, P.T., Grossfeld, R.M., Lieberman, E.M. Glia (1995) [Pubmed]
  41. Mechanism of NMDA receptor contribution to axon-to-glia signaling in the crayfish medial giant nerve fiber. Gafurov, B.S., Urazaev, A.K., Grossfeld, R.M., Lieberman, E.M. Glia (2002) [Pubmed]
WikiGenes - Universities