The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

CPD-3486     3-chlorobenzoate

Synonyms: CHEBI:19984, ZINC00156863, AC1MI0EV, m-chlorobenzoate, mCl-benzoate anion, ...
This record was replaced with 447.
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of HSDB 6018


High impact information on HSDB 6018


Chemical compound and disease context of HSDB 6018


Biological context of HSDB 6018

  • Introduction of two copies of the tcb gene cluster without prior 3-chlorobenzoate selection resulted in transconjugants able to grow on this carbon source [9].
  • The nucleotide sequence of cbaC, the 1-carboxy-3-chloro-4,5-dihydroxycyclohexa-2,6-diene (cis-diol) dehydrogenase gene from the 3-chlorobenzoate (3-Cba) catabolic transposon Tn5271 was determined [15].
  • The parameters for 3CB consumption kinetics varied remarkably with the experimental growth conditions in batch, chemostat, and recycling-fermentor environments [16].
  • The mutants were all of the following phenotype: benzoate+, 3-chlorobenzoate+, 2-chlorobenzoate-, 2,3-dichlorobenzoate-, 2,5-dichlorobenzoate-. While chlorocatechols were oxidized by the mutants at wild-type levels, oxidation of 2-chloro- and 2,3- and 2,5-dichlorobenzoates was substantially diminished [17].
  • The genes specifying the utilization of 3-chlorobenzoate by Pseudomonas sp. strain B13 WR1 have been cloned by using a broad-host-range cosmid cloning system [18].

Anatomical context of HSDB 6018

  • This speculation is based on an RFLP pattern of ribosome genes that differs from that of Pseudomonas sp. strain B13, the fact that identically sized restriction fragments hybridized to the catabolic gene probe, and the absence of any enrichable 3-chlorobenzoate-degrading strains in the aquifer prior to inoculation [19].
  • In the uninoculated soil, degraders increased from undetectable levels to 6.6 x 10(7) colony-forming-units g(-1) dry soil in the 500 microg 3-chlorobenzoate g(-1) dry soil microcosms, but none were detected in the 1,000 microg 3-chlorobenzoate g(-1) dry soil microcosms [20].

Associations of HSDB 6018 with other chemical compounds


Gene context of HSDB 6018

  • Comparison of the nucleotide and amino acid sequences for catB with the corresponding sequences of the clcB gene (K.L. Ngai, B.F., D.K. Chatterjee, L.N. Ornston, and A.M.C., unpublished), whose gene product catalyzes the analogous reaction in 3-chlorobenzoate degradation, showed significant homology [25].
  • R. eutropha containing the tfd (II) cluster alone or hybrid tfd-clusters with tfdD (II) as sole gene for chloromuconate cycloisomerase were impaired in growth on 3-chlorobenzoate, in contrast to R. eutrophaharboring the complete tfd (I) cluster [26].
  • The deletion mutant BR 40 and mitomycin C cured strains were not able to grow on 3Cba and had reversion frequencies of less than 10(-10) cell-1 generation-1 [27].
  • An Alcaligenes sp. BR60, isolated from surface runoff waters of the Hyde Park industrial landfill, contained a novel 85 kb catabolic plasmid (pBR60) functional in 3-chlorobenzoate (3Cba) degradation [27].

Analytical, diagnostic and therapeutic context of HSDB 6018


  1. Genes specifying degradation of 3-chlorobenzoic acid in plasmids pAC27 and pJP4. Ghosal, D., You, I.S., Chatterjee, D.K., Chakrabarty, A.M. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  2. Use of the Rhodopseudomonas palustris genome sequence to identify a single amino acid that contributes to the activity of a coenzyme A ligase with chlorinated substrates. Samanta, S.K., Harwood, C.S. Mol. Microbiol. (2005) [Pubmed]
  3. Isolation of Alcaligenes sp. strain L6 at low oxygen concentrations and degradation of 3-chlorobenzoate via a pathway not involving (chloro)catechols. Krooneman, J., Wieringa, E.B., Moore, E.R., Gerritse, J., Prins, R.A., Gottschal, J.C. Appl. Environ. Microbiol. (1996) [Pubmed]
  4. Role of tfdC(I)D(I)E(I)F(I) and tfdD(II)C(II)E(II)F(II) gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134(pJP4). Pérez-Pantoja, D., Guzmán, L., Manzano, M., Pieper, D.H., González, B. Appl. Environ. Microbiol. (2000) [Pubmed]
  5. Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60. Nakatsu, C.H., Wyndham, R.C. Appl. Environ. Microbiol. (1993) [Pubmed]
  6. Interaction of two LysR-type regulatory proteins CatR and ClcR with heterologous promoters: functional and evolutionary implications. Parsek, M.R., McFall, S.M., Shinabarger, D.L., Chakrabarty, A.M. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  7. Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. Pérez-Pantoja, D., Ledger, T., Pieper, D.H., González, B. J. Bacteriol. (2003) [Pubmed]
  8. Community shifts in a seeded 3-chlorobenzoate degrading membrane biofilm reactor: indications for involvement of in situ horizontal transfer of the clc-element from inoculum to contaminant bacteria. Springael, D., Peys, K., Ryngaert, A., Van Roy, S., Hooyberghs, L., Ravatn, R., Heyndrickx, M., van der Meer, J.R., Vandecasteele, C., Mergeay, M., Diels, L. Environ. Microbiol. (2002) [Pubmed]
  9. Chromosomal integration of tcb chlorocatechol degradation pathway genes as a means of expanding the growth substrate range of bacteria to include haloaromatics. Klemba, M., Jakobs, B., Wittich, R.M., Pieper, D. Appl. Environ. Microbiol. (2000) [Pubmed]
  10. Chemotaxis of Pseudomonas putida toward chlorinated benzoates. Harwood, C.S., Parales, R.E., Dispensa, M. Appl. Environ. Microbiol. (1990) [Pubmed]
  11. Comparative genetic organization of incompatibility group P degradative plasmids. Burlage, R.S., Bemis, L.A., Layton, A.C., Sayler, G.S., Larimer, F. J. Bacteriol. (1990) [Pubmed]
  12. The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates. Francisco, P., Ogawa, N., Suzuki, K., Miyashita, K. Microbiology (Reading, Engl.) (2001) [Pubmed]
  13. Description of strain 3CB-1, a genomovar of Thauera aromatica, capable of degrading 3-chlorobenzoate coupled to nitrate reduction. Song, B., Palleroni, N.J., Häggblom, M.M. Int. J. Syst. Evol. Microbiol. (2000) [Pubmed]
  14. Biosynthesis and cytoplasmic accumulation of a chlorinated catechol pigment during 3-chlorobenzoate aerobic co-metabolism in Pseudomonas fluorescens. Fava, F., Di Gioia, D., Romagnoli, C., Marchetti, L., Mares, D. Arch. Microbiol. (1993) [Pubmed]
  15. The cis-diol dehydrogenase cbaC gene of Tn5271 is required for growth on 3-chlorobenzoate but not 3,4-dichlorobenzoate. Nakatsu, C.H., Providenti, M., Wyndham, R.C. Gene (1997) [Pubmed]
  16. Measurement of minimum substrate concentration (Smin) in a recycling fermentor and its prediction from the kinetic parameters of Pseudomonas strain B13 from batch and chemostat cultures. Tros, M.E., Bosma, T.N., Schraa, G., Zehnder, A.J. Appl. Environ. Microbiol. (1996) [Pubmed]
  17. Degradation of mono-, di-, and trihalogenated benzoic acids by Pseudomonas aeruginosa JB2. Hickey, W.J., Focht, D.D. Appl. Environ. Microbiol. (1990) [Pubmed]
  18. Molecular cloning and expression of the 3-chlorobenzoate-degrading genes from Pseudomonas sp. strain B13. Weisshaar, M.P., Franklin, F.C., Reineke, W. J. Bacteriol. (1987) [Pubmed]
  19. Use of molecular techniques to evaluate the survival of a microorganism injected into an aquifer. Thiem, S.M., Krumme, M.L., Smith, R.L., Tiedje, J.M. Appl. Environ. Microbiol. (1994) [Pubmed]
  20. Soil microbial population dynamics following bioaugmentation with a 3-chlorobenzoate-degrading bacterial culture. Bioaugmentation effects on soil microorganisms. Gentry, T.J., Newby, D.T., Josephson, K.L., Pepper, I.L. Biodegradation (2001) [Pubmed]
  21. Pristine soils mineralize 3-chlorobenzoate and 2,4-dichlorophenoxyacetate via different microbial populations. Fulthorpe, R.R., Rhodes, A.N., Tiedje, J.M. Appl. Environ. Microbiol. (1996) [Pubmed]
  22. Reduction of 3-chlorobenzoate, 3-bromobenzoate, and benzoate to corresponding alcohols by Desulfomicrobium escambiense, isolated from a 3-chlorobenzoate-dechlorinating coculture. Genthner, B.R., Townsend, G.T., Blattmann, B.O. Appl. Environ. Microbiol. (1997) [Pubmed]
  23. Organization and sequence analysis of the 2,4-dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. Perkins, E.J., Gordon, M.P., Caceres, O., Lurquin, P.F. J. Bacteriol. (1990) [Pubmed]
  24. Degradation of 2-methylbenzoic acid by Pseudomonas cepacia MB2. Higson, F.K., Focht, D.D. Appl. Environ. Microbiol. (1992) [Pubmed]
  25. Cloning and complete nucleotide sequence determination of the catB gene encoding cis,cis-muconate lactonizing enzyme. Aldrich, T.L., Frantz, B., Gill, J.F., Kilbane, J.J., Chakrabarty, A.M. Gene (1987) [Pubmed]
  26. TfdD(II), one of the two chloromuconate cycloisomerases of Ralstonia eutropha JMP134 (pJP4), cannot efficiently convert 2-chloro- cis, cis-muconate to trans-dienelactone to allow growth on 3-chlorobenzoate. Laemmli, C.M., Schönenberger, R., Suter, M., Zehnder, A.J., van der Meer, J.R. Arch. Microbiol. (2002) [Pubmed]
  27. Catabolic instability, plasmid gene deletion and recombination in Alcaligenes sp. BR60. Wyndham, R.C., Singh, R.K., Straus, N.A. Arch. Microbiol. (1988) [Pubmed]
WikiGenes - Universities