The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Septi-Kleen     2-chlorophenol

Synonyms: o-Chlorphenol, o-Chlorophenol, PubChem12600, CCRIS 640, SureCN12279, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Chlorophenols


Psychiatry related information on Chlorophenols

  • Up to 90% 2-chlorophenol was removed after 90-minute reaction time with H2O2 of 25% COD(Cr, in), while in UV/H2O2 system only 16.8% 2-chlorophenol was removed after one hour treatment [6].
  • For the cirrhosis of the liver category, internal comparisons demonstrated increasing trends associated with duration of employment in the Chlorophenol Production and Finishing areas; but available evidence suggests this finding was related to alcohol abuse [7].

High impact information on Chlorophenols


Chemical compound and disease context of Chlorophenols


Biological context of Chlorophenols


Anatomical context of Chlorophenols

  • Chlorophenol Red was readily transported into the lumen of the foregut, the posterior portion of the midgut, the ureter, the proximal region of the anterior pair of MT, and entire posterior pair of MT [22].
  • The experiments demonstrated that immobilized cells exhibit a higher bioactivity in the degradation of chlorophenol than free cells [23].
  • We have identified beta-galactosidase activity in purified bovine rod outer segments (ROS), using rho-nitrophenyl-beta-D-galactopyranoside (PNPG) and chlorophenol red-beta-D-galactopyranoside (CPRG) as substrates [24].
  • The intracanal medicament chlorophenol caused periapical tissue damage [25].
  • The effect of hydroxychlorodiphenyl ethers (HO-ClX-DPEs; chlorinated pre- and isopredibenzodioxins), contaminants of technical chlorophenol preparations, on human erythrocyte membrane-bound adenosinetriphosphatases (ATPases) has been investigated [26].

Associations of Chlorophenols with other chemical compounds


Gene context of Chlorophenols

  • Whereas the cprB (chlorophenol reductive dehalogenase) genes of chlorophenol-dehalorespiring bacteria are always located upstream of cprA, all pceB genes known so far are located downstream of pceA [32].
  • By expressing each ORF in Escherichia coli, we confirmed that tfdD(II) coded for a chloromuconate cycloisomerase, tfdC(II) coded for a chlorocatechol 1, 2-dioxygenase, tfdE(II) coded for a dienelactone hydrolase, tfdF(II) coded for a maleylacetate reductase, and tfdB(II) coded for a chlorophenol hydroxylase [19].
  • The growth yield was about 3 g of protein per mol of 2-chlorophenol dechlorinated, and the doubling time was 3.7 days [33].
  • This is the first electrochemical biosensing using P450 monooxygenases immobilized on the ISFET, and is applicable to the sensing of chlorophenol compounds [34].
  • A 100-fold enriched fraction of chlorophenol reductive dehalogenase was obtained that mainly contained a protein with a subunit size of 48 kDa [15].

Analytical, diagnostic and therapeutic context of Chlorophenols

  • The chlorophenol concentrations in the acceptor were then determined by direct injection into a HPLC system [35].
  • When coupled with flow injection analysis (FIA), anodized diamond exhibited excellent stability, with a response variability of 2.3% (n = 100), for the oxidation of a high concentration (5 mM) of chlorophenol [36].
  • Exposure to dioxin and nonneoplastic mortality in the expanded IARC international cohort study of phenoxy herbicide and chlorophenol production workers and sprayers [37].
  • The biorecognition element is covalently immobilized onto controlled pore glass beads (CPG) and packed in a thermostatized bioreactor connected to a flow-through cell that contains CPG-immobilized chlorophenol red placed at the common end of a bifurcated fiber optic bundle [38].
  • A rapid and solvent-free method for the determination of nine chlorophenol (CP) compounds in honey samples using headspace solid-phase microextraction (HS-SPME) and gas chromatography with atomic emission detection (GC-AED) is developed [39].


  1. Crystal structure of 3-chlorocatechol 1,2-dioxygenase key enzyme of a new modified ortho-pathway from the Gram-positive Rhodococcus opacus 1CP grown on 2-chlorophenol. Ferraroni, M., Kolomytseva, M.P., Solyanikova, I.P., Scozzafava, A., Golovleva, L.A., Briganti, F. J. Mol. Biol. (2006) [Pubmed]
  2. X-ray absorption studies on catechol 2,3-dioxygenase from Pseudomonas putida mt2. Bertini, I., Briganti, F., Mangani, S., Nolting, H.F., Scozzafava, A. Biochemistry (1994) [Pubmed]
  3. Case-control study evaluating the homogeneity and heterogeneity of risk factors between sinonasal and nasopharyngeal cancers. Zhu, K., Levine, R.S., Brann, E.A., Hall, H.I., Caplan, L.S., Gnepp, D.R. Int. J. Cancer (2002) [Pubmed]
  4. Occupational chlorophenol exposure and soft tissue sarcoma risk among men aged 30-60 years. Hoppin, J.A., Tolbert, P.E., Herrick, R.F., Freedman, D.S., Ragsdale, B.D., Horvat, K.R., Brann, E.A. Am. J. Epidemiol. (1998) [Pubmed]
  5. Purification and characterization of the 3-chloro-4-hydroxy-phenylacetate reductive dehalogenase of Desulfitobacterium hafniense. Christiansen, N., Ahring, B.K., Wohlfarth, G., Diekert, G. FEBS Lett. (1998) [Pubmed]
  6. 2-Chlorophenol oxidation kinetic by photo-assisted Fenton process. Xu, X.H., Zhao, W.R., Huang, Y.Q., Wang, D.H. Journal of environmental sciences (China). (2003) [Pubmed]
  7. Cohort mortality study of chemical workers with potential exposure to the higher chlorinated dioxins. Ott, M.G., Olson, R.A., Cook, R.R., Bond, G.G. Journal of occupational medicine. : official publication of the Industrial Medical Association. (1987) [Pubmed]
  8. Perspectives on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during municipal solid waste (MSW) incineration and other combustion processes. Tuppurainen, K., Asikainen, A., Ruokojärvi, P., Ruuskanen, J. Acc. Chem. Res. (2003) [Pubmed]
  9. Nonionic polymeric micelles for oral gene delivery in vivo. Chang, S.F., Chang, H.Y., Tong, Y.C., Chen, S.H., Hsaio, F.C., Lu, S.C., Liaw, J. Hum. Gene Ther. (2004) [Pubmed]
  10. Impact of the specificity of the exposure metric on exposure-response relationships. Friesen, M.C., Davies, H.W., Teschke, K., Ostry, A.S., Hertzman, C., Demers, P.A. Epidemiology (Cambridge, Mass.) (2007) [Pubmed]
  11. Chlorophenol hydroxylases encoded by plasmid pJP4 differentially contribute to chlorophenoxyacetic acid degradation. Ledger, T., Pieper, D.H., González, B. Appl. Environ. Microbiol. (2006) [Pubmed]
  12. Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Nordin, K., Unell, M., Jansson, J.K. Appl. Environ. Microbiol. (2005) [Pubmed]
  13. Efficient degradation of 2,4,6-Trichlorophenol requires a set of catabolic genes related to tcp genes from Ralstonia eutropha JMP134(pJP4). Matus, V., Sánchez, M.A., Martínez, M., González, B. Appl. Environ. Microbiol. (2003) [Pubmed]
  14. Regulation of 2,4,5-trichlorophenoxyacetic acid and chlorophenol metabolism in Pseudomonas cepacia AC1100. Karns, J.S., Duttagupta, S., Chakrabarty, A.M. Appl. Environ. Microbiol. (1983) [Pubmed]
  15. Two distinct enzyme systems are responsible for tetrachloroethene and chlorophenol reductive dehalogenation in Desulfitobacterium strain PCE1. van de Pas, B.A., Gerritse, J., de Vos, W.M., Schraa, G., Stams, A.J. Arch. Microbiol. (2001) [Pubmed]
  16. 4-Chlorocatechol 1,2-dioxygenase from the chlorophenol-utilizing Gram-positive Rhodococcus opacus 1CP: crystallization and preliminary crystallographic analysis. Ferraroni, M., Ruiz Tarifa, M.Y., Briganti, F., Scozzafava, A., Mangani, S., Solyanikova, I.P., Kolomytseva, M.P., Golovleva, L. Acta Crystallogr. D Biol. Crystallogr. (2002) [Pubmed]
  17. A new modified ortho cleavage pathway of 3-chlorocatechol degradation by Rhodococcus opacus 1CP: genetic and biochemical evidence. Moiseeva, O.V., Solyanikova, I.P., Kaschabek, S.R., Gröning, J., Thiel, M., Golovleva, L.A., Schlömann, M. J. Bacteriol. (2002) [Pubmed]
  18. Childhood cancer in the offspring of male sawmill workers occupationally exposed to chlorophenate fungicides. Heacock, H., Hertzman, C., Demers, P.A., Gallagher, R., Hogg, R.S., Teschke, K., Hershler, R., Bajdik, C.D., Dimich-Ward, H., Marion, S.A., Ostry, A., Kelly, S. Environ. Health Perspect. (2000) [Pubmed]
  19. Characterization of a second tfd gene cluster for chlorophenol and chlorocatechol metabolism on plasmid pJP4 in Ralstonia eutropha JMP134(pJP4). Laemmli, C.M., Leveau, J.H., Zehnder, A.J., van der Meer, J.R. J. Bacteriol. (2000) [Pubmed]
  20. Impact of temperature on the physiological status of a potential bioremediation inoculant, Arthrobacter chlorophenolicus A6. Backman, A., Maraha, N., Jansson, J.K. Appl. Environ. Microbiol. (2004) [Pubmed]
  21. Microbial mineralization of ring-substituted anilines through an ortho-cleavage pathway. Zeyer, J., Wasserfallen, A., Timmis, K.N. Appl. Environ. Microbiol. (1985) [Pubmed]
  22. Changes in gut and Malpighian tubule transport during seasonal acclimatization and freezing in the gall fly Eurosta solidaginis. Yi, S.X., Lee, R.E. J. Exp. Biol. (2005) [Pubmed]
  23. Microbial degradation of 4-chlorophenol by microorganisms entrapped in carrageenan-chitosan gels. Wang, J., Qian, Y. Chemosphere (1999) [Pubmed]
  24. Identification of beta-galactosidase activity in purified bovine retinal rod outer segments. Prasad, V.V., Fliesler, S.J. Curr. Eye Res. (1994) [Pubmed]
  25. Reaction of inflamed periapical tissue to intracanal medicaments and root canal sealers. Tepel, J., Darwisch el Sawaf, M., Hoppe, W. Endodontics & dental traumatology. (1994) [Pubmed]
  26. Effect of hydroxychlorodiphenyl ethers (chlorinated pre-and isopredioxins) on erythrocyte membrane adenosinetriphosphatase activity. Lorusso, D.J., Miller, T.L., Deinzer, M.L. Journal of toxicology and environmental health. (1981) [Pubmed]
  27. An infrared and X-ray spectroscopic study of the reactions of 2-chlorophenol, 1,2-dichlorobenzene, and chlorobenzene with model cuO/silica fly ash surfaces. Alderman, S.L., Farquar, G.R., Poliakoff, E.D., Dellinger, B. Environ. Sci. Technol. (2005) [Pubmed]
  28. Amperometric tyrosinase biosensor based on polyacrylamide microgels. Hervás Pérez, J.P., Sánchez-Paniagua López, M., López-Cabarcos, E., López-Ruiz, B. Biosensors & bioelectronics. (2006) [Pubmed]
  29. Impact of freeze-drying on ionization of sulfonephthalein probe molecules in trehalose-citrate systems. Govindarajan, R., Chatterjee, K., Gatlin, L., Suryanarayanan, R., Shalaev, E.Y. Journal of pharmaceutical sciences. (2006) [Pubmed]
  30. Isolation and characterization of Citrobacter strain HPC255 for broad-range substrate specificity for chlorophenols. Narde, G.K., Kapley, A., Purohit, H.J. Curr. Microbiol. (2004) [Pubmed]
  31. Evaluation of solid substrates for enzyme production by Coriolus versicolor, for use in bioremediation of chlorophenols in aqueous effluents. Ullah, M.A., Kadhim, H., Rastall, R.A., Evans, C.S. Appl. Microbiol. Biotechnol. (2000) [Pubmed]
  32. Characterization of the corrinoid iron-sulfur protein tetrachloroethene reductive dehalogenase of Dehalobacter restrictus. Maillard, J., Schumacher, W., Vazquez, F., Regeard, C., Hagen, W.R., Holliger, C. Appl. Environ. Microbiol. (2003) [Pubmed]
  33. Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol. Cole, J.R., Cascarelli, A.L., Mohn, W.W., Tiedje, J.M. Appl. Environ. Microbiol. (1994) [Pubmed]
  34. A novel ISFET-type biosensor based on P450 monooxygenases. Hara, M., Yasuda, Y., Toyotama, H., Ohkawa, H., Nozawa, T., Miyake, J. Biosensors & bioelectronics. (2002) [Pubmed]
  35. Equilibrium sampling through membranes of freely dissolved chlorophenols in water samples with hollow fiber supported liquid membrane. Liu, J.F., Jönsson, J.A., Mayer, P. Anal. Chem. (2005) [Pubmed]
  36. Electrochemical oxidation of chlorophenols at a boron-doped diamond electrode and their determination by high-performance liquid chromatography with amperometric detection. Terashima, C., Rao, T.N., Sarada, B.V., Tryk, D.A., Fujishima, A. Anal. Chem. (2002) [Pubmed]
  37. Exposure to dioxin and nonneoplastic mortality in the expanded IARC international cohort study of phenoxy herbicide and chlorophenol production workers and sprayers. Vena, J., Boffetta, P., Becher, H., Benn, T., Bueno-de-Mesquita, H.B., Coggon, D., Colin, D., Flesch-Janys, D., Green, L., Kauppinen, T., Littorin, M., Lynge, E., Mathews, J.D., Neuberger, M., Pearce, N., Pesatori, A.C., Saracci, R., Steenland, K., Kogevinas, M. Environ. Health Perspect. (1998) [Pubmed]
  38. Fiber optic monitoring of carbamate pesticides using porous glass with covalently bound chlorophenol red. Xavier, M.P., Vallejo, B., Marazuela, M.D., Moreno-Bondi, M.C., Baldini, F., Falai, A. Biosensors & bioelectronics. (2000) [Pubmed]
  39. Evaluation of solid-phase microextraction conditions for the determination of chlorophenols in honey samples using gas chromatography. Campillo, N., Peñalver, R., Hernández-Córdoba, M. Journal of chromatography. A. (2006) [Pubmed]
WikiGenes - Universities