The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

PubChem17861     3-methylbenzene-1,2-diol

Synonyms: CPD-111, SureCN67369, M34006_ALDRICH, AG-C-22662, AG-K-80734, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of 3-Methyl-1, 2-dihydroxybenzene


High impact information on 3-Methyl-1, 2-dihydroxybenzene


Chemical compound and disease context of 3-Methyl-1, 2-dihydroxybenzene


Biological context of 3-Methyl-1, 2-dihydroxybenzene


Anatomical context of 3-Methyl-1, 2-dihydroxybenzene


Associations of 3-Methyl-1, 2-dihydroxybenzene with other chemical compounds


Gene context of 3-Methyl-1, 2-dihydroxybenzene


  1. Extradiol cleavage of 3-substituted catechols by an intradiol dioxygenase, pyrocatechase, from a Pseudomonad. Fujiwara, M., Golovleva, L.A., Saeki, Y., Nozaki, M., Hayaishi, O. J. Biol. Chem. (1975) [Pubmed]
  2. Integrated bioproduction and extraction of 3-methylcatechol. Hüsken, L.E., Dalm, M.C., Tramper, J., Wery, J., de Bont, J.A., Beeftink, R. J. Biotechnol. (2001) [Pubmed]
  3. Characterization of methylhydroquinone-metabolizing oxygenase genes encoded on plasmid in Burkholderia sp. NF100. Tago, K., Sato, J., Takesa, H., Kawagishi, H., Hayatsu, M. J. Biosci. Bioeng. (2005) [Pubmed]
  4. Description of toluene inhibition of methyl bromide biodegradation in seawater and isolation of a marine toluene oxidizer that degrades methyl bromide. Goodwin, K.D., Tokarczyk, R., Stephens, F.C., Saltzman, E.S. Appl. Environ. Microbiol. (2005) [Pubmed]
  5. Protein engineering of toluene-o-xylene monooxygenase from Pseudomonas stutzeri OX1 for synthesizing 4-methylresorcinol, methylhydroquinone, and pyrogallol. Vardar, G., Wood, T.K. Appl. Environ. Microbiol. (2004) [Pubmed]
  6. Biotransformation in double-phase systems: physiological responses of Pseudomonas putida DOT-T1E to a double phase made of aliphatic alcohols and biosynthesis of substituted catechols. Rojas, A., Duque, E., Schmid, A., Hurtado, A., Ramos, J.L., Segura, A. Appl. Environ. Microbiol. (2004) [Pubmed]
  7. Metabolism of styrene by Rhodococcus rhodochrous NCIMB 13259. Warhurst, A.M., Clarke, K.F., Hill, R.A., Holt, R.A., Fewson, C.A. Appl. Environ. Microbiol. (1994) [Pubmed]
  8. Oxidative release of nitrite from 2-nitrotoluene by a three-component enzyme system from Pseudomonas sp. strain JS42. An, D., Gibson, D.T., Spain, J.C. J. Bacteriol. (1994) [Pubmed]
  9. Inhibition of catechol 2,3-dioxygenase from Pseudomonas putida by 3-chlorocatechol. Klecka, G.M., Gibson, D.T. Appl. Environ. Microbiol. (1981) [Pubmed]
  10. Electrochemical monitoring of the biodegradation of 2,4-dimethylaniline. Brimecombe, R.D., Fogel, R., Limson, J.L. J. Agric. Food Chem. (2006) [Pubmed]
  11. Membrane-facilitated bioproduction of 3-methylcatechol in an octanol/water two-phase system. Hüsken, L.E., Oomes, M., Schroën, K., Tramper, J., de Bont, J.A., Beeftink, R. J. Biotechnol. (2002) [Pubmed]
  12. Catechol 1,2-dioxygenase from Acinetobacter calcoaceticus: purification and properties. Patel, R.N., Hou, C.T., Felix, A., Lillard, M.O. J. Bacteriol. (1976) [Pubmed]
  13. Genetic organization and regulation of a meta cleavage pathway for catechols produced from catabolism of toluene, benzene, phenol, and cresols by Pseudomonas pickettii PKO1. Kukor, J.J., Olsen, R.H. J. Bacteriol. (1991) [Pubmed]
  14. Structure of catechol 2,3-dioxygenase gene encoded in TOM plasmid of Pseudomonas cepacia G4. Oh, J.M., Kang, E., Min, K.R., Kim, C.K., Kim, Y.C., Lim, J.Y., Lee, K.S., Min, K.H., Kim, Y. Biochem. Biophys. Res. Commun. (1997) [Pubmed]
  15. Substrate specificity differences between two catechol 2,3-dioxygenases encoded by the TOL and NAH plasmids from Pseudomonas putida. Cerdan, P., Rekik, M., Harayama, S. Eur. J. Biochem. (1995) [Pubmed]
  16. In vitro cytotoxicity of BTEX metabolites in HeLa cells. Shen, Y. Arch. Environ. Contam. Toxicol. (1998) [Pubmed]
  17. Development of a stable isotope dilution analysis with liquid chromatography-tandem mass spectrometry detection for the quantitative analysis of di- and trihydroxybenzenes in foods and model systems. Lang, R., Mueller, C., Hofmann, T. J. Agric. Food Chem. (2006) [Pubmed]
  18. Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Pettigrew, C.A., Haigler, B.E., Spain, J.C. Appl. Environ. Microbiol. (1991) [Pubmed]
WikiGenes - Universities