The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

NSC-342435     6-hydroxy-2-naphthalen-1-yl- 2,3-dihydro-1H...

Synonyms: AC1L7GFB, NSC342435, NCI60_003040, QUINAZOLINONE 6-OH-2,3-DIHYDRO-2-(1-NAPHTHYL)
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC342435

  • Inhibition of HIV-1 reverse transcriptase by a quinazolinone and comparison with inhibition by pyridinones. Differences in the rates of inhibitor binding and in synergistic inhibition with nucleoside analogs [1].
 

High impact information on NSC342435

 

Chemical compound and disease context of NSC342435

  • Efavirenz and a series of related quinazolinone nonnucleoside inhibitors of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) were evaluated in a series of two-drug combinations with several nucleoside RT inhibitors (NRTIs), nonnucleoside RT inhibitors (NNRTIs), and protease inhibitors (PIs) [7].
 

Biological context of NSC342435

 

Anatomical context of NSC342435

  • We compared the coronary vasodilator and cardiac effects of MCI-176, a novel quinazolinone calcium antagonist, in isolated, blood-perfused sinoatrial (SA) node, atrioventricular (AV) node, and papillary muscle preparations of dogs [13].
 

Associations of NSC342435 with other chemical compounds

  • The effect on enzyme inhibition of varying the N10 substituent of 2h was similar to that observed in the quinazolinone-containing antifolates, indicating that the quinoline compounds may be interacting with the enzyme in a similar way to the quinazolinones [14].
  • Our aim was to identify a PARP inhibitor for clinical trial from a panel of 42 potent PARP inhibitors (K(i), 1.4-15.1 nmol/L) based on the quinazolinone, benzimidazole, tricyclic benzimidazole, tricyclic indole, and tricyclic indole-1-one core structures [15].
  • Results obtained from this study suggest that the antihyperlipidemic effect of quinazolinone compounds was brought about by inhibition of dietary cholesterol absorption and / or intestinal ACAT activity [16].
 

Gene context of NSC342435

  • The syntheses and SAR studies of various quinazolinone compounds are described for the dual inhibition of Pgp and MRP1 in multidrug resistance [17].
  • Quinazolinone derivatives: synthesis and binding evaluation on cholecystokinin receptors [18].
  • Synthesis and X-ray crystallographic analysis of quinazolinone cholecystokinin/gastrin receptor ligands [19].
  • Since asperlicin, a selective CCK-A receptor antagonist, may be regarded as a conformationally constrained 2-substituted-3-phenyl-4(3H)-quinazolinone, the progenitor of compound 3 (compound 2, 2-[2-(1H-indol-3-yl)ethyl]-3-phenyl-4(3H)- quinazolinone) might therefore represent a conformationally flexible pharmacophore of the natural product [19].
  • A series of 2-aralkyl-4H-pyridothiadiazine 1,1-dioxides and 3-aralkylamino-2-aryl-2H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxides structurally related to quinazolinone CCK receptor antagonists were synthesized and evaluated as CCK-A and CCK-B receptor ligands [20].
 

Analytical, diagnostic and therapeutic context of NSC342435

  • HPLC assay in plasma and preliminary pharmacokinetic study of a quinazolinone derivative with spasmolytic effect [21].
  • Recently, small moleculer inhibitors of one kinesin, kinesin spindle protein (KSP/Eg5/kinesin5), have been shown to be efficacious in pre-clinical studies, with one quinazolinone-based inhibitor advancing to Phase II clinical trials as a potential anticancer chemotherapeutic agent [22].

References

  1. Inhibition of HIV-1 reverse transcriptase by a quinazolinone and comparison with inhibition by pyridinones. Differences in the rates of inhibitor binding and in synergistic inhibition with nucleoside analogs. Carroll, S.S., Stahlhut, M., Geib, J., Olsen, D.B. J. Biol. Chem. (1994) [Pubmed]
  2. Structural basis for p38alpha MAP kinase quinazolinone and pyridol-pyrimidine inhibitor specificity. Fitzgerald, C.E., Patel, S.B., Becker, J.W., Cameron, P.M., Zaller, D., Pikounis, V.B., O'Keefe, S.J., Scapin, G. Nat. Struct. Biol. (2003) [Pubmed]
  3. Halofuginone: a potent inhibitor of critical steps in angiogenesis progression. Elkin, M., Miao, H.Q., Nagler, A., Aingorn, E., Reich, R., Hemo, I., Dou, H.L., Pines, M., Vlodavsky, I. FASEB J. (2000) [Pubmed]
  4. A novel nonpeptide ligand for formyl peptide receptor-like 1. Nanamori, M., Cheng, X., Mei, J., Sang, H., Xuan, Y., Zhou, C., Wang, M.W., Ye, R.D. Mol. Pharmacol. (2004) [Pubmed]
  5. Inhibition of matrix metalloproteinase-2 expression and bladder carcinoma metastasis by halofuginone. Elkin, M., Reich, R., Nagler, A., Aingorn, E., Pines, M., de-Groot, N., Hochberg, A., Vlodavsky, I. Clin. Cancer Res. (1999) [Pubmed]
  6. Rational approaches to discovery of orally active and brain-penetrable quinazolinone inhibitors of poly(ADP-ribose)polymerase. Hattori, K., Kido, Y., Yamamoto, H., Ishida, J., Kamijo, K., Murano, K., Ohkubo, M., Kinoshita, T., Iwashita, A., Mihara, K., Yamazaki, S., Matsuoka, N., Teramura, Y., Miyake, H. J. Med. Chem. (2004) [Pubmed]
  7. Potency of nonnucleoside reverse transcriptase inhibitors (NNRTIs) used in combination with other human immunodeficiency virus NNRTIs, NRTIs, or protease inhibitors. King, R.W., Klabe, R.M., Reid, C.D., Erickson-Viitanen, S.K. Antimicrob. Agents Chemother. (2002) [Pubmed]
  8. Synthesis and biological evaluation of 2-styrylquinazolin-4(3H)-ones, a new class of antimitotic anticancer agents which inhibit tubulin polymerization. Jiang, J.B., Hesson, D.P., Dusak, B.A., Dexter, D.L., Kang, G.J., Hamel, E. J. Med. Chem. (1990) [Pubmed]
  9. Resistance-modifying agents. 5. Synthesis and biological properties of quinazolinone inhibitors of the DNA repair enzyme poly(ADP-ribose) polymerase (PARP). Griffin, R.J., Srinivasan, S., Bowman, K., Calvert, A.H., Curtin, N.J., Newell, D.R., Pemberton, L.C., Golding, B.T. J. Med. Chem. (1998) [Pubmed]
  10. Effects of MCI-176, a new quinazolinone calcium antagonist, on myocardial energy and carbohydrate metabolism in ischemic dog hearts. Abe, Y., Ichihara, K., Abiko, Y. Biochem. Pharmacol. (1991) [Pubmed]
  11. Molecular modeling study of diltiazem mimics at L-type calcium channels. Schleifer, K.J., Tot, E. Pharm. Res. (1999) [Pubmed]
  12. Kinetic studies of 2-(2'-Haloethyl) and 2-ethenyl substituted quinazolinone alkylating agents. Acid-catalyzed dehydrohalogenation and alkylation involving a quinazolinone prototropic tautomer. Dempcy, R.O., Skibo, E.B. Bioorg. Med. Chem. (1993) [Pubmed]
  13. Coronary vasodilator versus cardiac effects of MCI-176, a novel quinazolinone calcium antagonist, in the dog heart. Hosono, M., Taira, N. J. Cardiovasc. Pharmacol. (1987) [Pubmed]
  14. Quinoline antifolate thymidylate synthase inhibitors: variation of the C2- and C4-substituents. Warner, P., Barker, A.J., Jackman, A.L., Burrows, K.D., Roberts, N., Bishop, J.A., O'Connor, B.M., Hughes, L.R. J. Med. Chem. (1992) [Pubmed]
  15. Preclinical selection of a novel poly(ADP-ribose) polymerase inhibitor for clinical trial. Thomas, H.D., Calabrese, C.R., Batey, M.A., Canan, S., Hostomsky, Z., Kyle, S., Maegley, K.A., Newell, D.R., Skalitzky, D., Wang, L.Z., Webber, S.E., Curtin, N.J. Mol. Cancer Ther. (2007) [Pubmed]
  16. The antihyperlipidemic activities of 4(3H) quinazolinone and two halogenated derivatives in rats. Refaie, F.M., Esmat, A.Y., Gawad, S.M., Ibrahim, A.M., Mohamed, M.A. Lipids in health and disease [electronic resource]. (2005) [Pubmed]
  17. Studies on quinazolinones as dual inhibitors of Pgp and MRP1 in multidrug resistance. Wang, S., Ryder, H., Pretswell, I., Depledge, P., Milton, J., Hancox, T.C., Dale, I., Dangerfield, W., Charlton, P., Faint, R., Dodd, R., Hassan, S. Bioorg. Med. Chem. Lett. (2002) [Pubmed]
  18. Quinazolinone derivatives: synthesis and binding evaluation on cholecystokinin receptors. Varnavas, A., Lassiani, L., Luxich, E., Zacchigna, M., Boccù, E. Farmaco (1996) [Pubmed]
  19. Synthesis and X-ray crystallographic analysis of quinazolinone cholecystokinin/gastrin receptor ligands. Yu, M.J., McCowan, J.R., Mason, N.R., Deeter, J.B., Mendelsohn, L.G. J. Med. Chem. (1992) [Pubmed]
  20. Synthesis and biological evaluation of new 3-aralkylamino-2-aryl-2H-1, 2,4-pyridothiadiazine 1,1-dioxides as potential CCK-receptor ligands. De Tullio, P., Pirotte, B., Neven, P., Masereel, B., Dewalque, D., Diouf, O., Podona, T., Caignard, D., Renard, P., Delarge, J. J. Pharm. Pharmacol. (1997) [Pubmed]
  21. HPLC assay in plasma and preliminary pharmacokinetic study of a quinazolinone derivative with spasmolytic effect. Kastner, P., Klimes, J., Láznícek, M., Jira, T. Die Pharmazie. (2003) [Pubmed]
  22. Mitotic kinesins: prospects for antimitotic drug discovery. Bergnes, G., Brejc, K., Belmont, L. Current topics in medicinal chemistry. (2005) [Pubmed]
 
WikiGenes - Universities