The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Papillary Muscles

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Papillary Muscles

 

High impact information on Papillary Muscles

  • Tumor necrosis factor alpha, interleukin-6, and interleukin-2 inhibited contractility of isolated hamster papillary muscles in a concentration-dependent, reversible manner [6].
  • Mechanism of myocardial contractile depression by clinical concentrations of ethanol. A study in ferret papillary muscles [7].
  • We evaluated the effects of the diterpene compound forskolin in human myocardial adenylate cyclase preparations, isolated trabeculae and papillary muscles derived from failing human hearts, and acutely instrumented dogs [8].
  • Ouabain effects on intracellular potassium activity and contractile force in cat papillary muscle [9].
  • Baseline isoproterenol-stimulated papillary muscle contractile force was significantly lower in the cirrhotic group; with L-NAME incubation, contractile force increased significantly in cirrhotic rats but was unaffected in the controls [10].
 

Chemical compound and disease context of Papillary Muscles

 

Biological context of Papillary Muscles

  • We investigated whether this depression could be due to a direct effect of ethanol on the process of electromechanical coupling by simultaneously measuring the transmembrane action potential and contraction, or the cytosolic calcium transient (via aequorin photoluminescence) and contraction in isolated ferret right ventricular papillary muscle [7].
  • Isoproterenol largely restored contractility in papillary muscle and stimulated PLN phosphorylation to wild-type levels in intact hearts [16].
  • Membrane potential (MP) was changed uniformly in segments (length less than or equal to 1.0 mm) of papillary muscles by applying extracellular polarizing current pulses across a single sucrose gap [17].
  • Isometric contraction of isolated rat left ventricular posterior papillary muscle was virtually eliminated at the end of an exposure to 15 minutes of hypoxia and remained 40+/-5% depressed an hour after the reintroduction of O2 [18].
  • The contribution of electrogenic Na(+)-HCO3- cotransport to pHi regulation during changes in heart rate was explored in cat papillary muscles loaded with BCECF-AM in bicarbonate-free (HEPES) medium and in CO2/HCO3(-)-buffered medium [19].
 

Anatomical context of Papillary Muscles

 

Associations of Papillary Muscles with chemical compounds

 

Gene context of Papillary Muscles

  • There was a large gradient of Kv4.2 expression across the ventricular wall, and Kv4.2 expression in epicardial muscle was more than eight times higher than in papillary muscle [28].
  • Isolated left ventricular papillary muscles from wild-type (WT) and phospholamban knockout (KO) mice were stimulated at 2 to 6 Hz [29].
  • Polyclonal antibodies raised against a peptide sequence of the human DMPK were used to analyze the subcellular distribution of the protein in rat papillary muscles [30].
  • METHODS: Experiments were performed in isometrically contracting (0.2 Hz) rat papillary muscles at 30 degrees C. DF was measured either after stretch or after the addition of ET-1 or ET-3 (in doses that increase contractility to a similar magnitude as does the SFR), with or without the selective ETA receptor antagonist BQ123 (300 nmol/L) [31].
  • Concomitant administration of IGF binding protein-3 blocked IGF-1-positive inotropic action in ferret papillary muscles [32].
 

Analytical, diagnostic and therapeutic context of Papillary Muscles

References

  1. Myocardial protection after whole body heat stress in the rabbit is dependent on metabolic substrate and is related to the amount of the inducible 70-kD heat stress protein. Marber, M.S., Walker, J.M., Latchman, D.S., Yellon, D.M. J. Clin. Invest. (1994) [Pubmed]
  2. BRL 34915 (cromakalim) activates ATP-sensitive K+ current in cardiac muscle. Sanguinetti, M.C., Scott, A.L., Zingaro, G.J., Siegl, P.K. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  3. Surgical treatment of idiopathic hypertrophic subaortic stenosis (IHSS). Postoperative results in 30 patients following ventricular septal myotomy and myectomy (Morrow procedure). Reis, R.L., Hannah, H., Carley, J.E., Pugh, D.M. Circulation (1977) [Pubmed]
  4. Influence of mannitol on maintaining coronary flows and salvaging myocardium during ventriculotomy and during prolonged coronary artery ligation. Fixler, D.E., Buja, L.M., Wheeler, J.M., Willerson, J.T. Circulation (1977) [Pubmed]
  5. Influence of rate-dependent cellular uncoupling on conduction change during simulated ischemia in guinea pig papillary muscles: effect of verapamil. Hiramatsu, Y., Buchanan, J.W., Knisley, S.B., Koch, G.G., Kropp, S., Gettes, L.S. Circ. Res. (1989) [Pubmed]
  6. Negative inotropic effects of cytokines on the heart mediated by nitric oxide. Finkel, M.S., Oddis, C.V., Jacob, T.D., Watkins, S.C., Hattler, B.G., Simmons, R.L. Science (1992) [Pubmed]
  7. Mechanism of myocardial contractile depression by clinical concentrations of ethanol. A study in ferret papillary muscles. Guarnieri, T., Lakatta, E.G. J. Clin. Invest. (1990) [Pubmed]
  8. Pharmacology and inotropic potential of forskolin in the human heart. Bristow, M.R., Ginsburg, R., Strosberg, A., Montgomery, W., Minobe, W. J. Clin. Invest. (1984) [Pubmed]
  9. Ouabain effects on intracellular potassium activity and contractile force in cat papillary muscle. Browning, D.J., Guarnieri, T., Strauss, H.C. J. Clin. Invest. (1981) [Pubmed]
  10. Contribution of nitric oxide to the pathogenesis of cirrhotic cardiomyopathy in bile duct-ligated rats. Liu, H., Ma, Z., Lee, S.S. Gastroenterology (2000) [Pubmed]
  11. Reversibility of diabetic cardiomyopathy with insulin in rats. Fein, F.S., Strobeck, J.E., Malhotra, A., Scheuer, J., Sonnenblick, E.H. Circ. Res. (1981) [Pubmed]
  12. Heat production during hypoxic contracture of rat myocardium. Holubarsch, C., Alpert, N.R., Goulette, R., Mulieri, L.A. Circ. Res. (1982) [Pubmed]
  13. Early changes in extracellular potassium in ischemic rabbit myocardium. The role of extracellular carbon dioxide accumulation and diffusion. Cascio, W.E., Yan, G.X., Kléber, A.G. Circ. Res. (1992) [Pubmed]
  14. The myocardial energetic active state. I. Oxygen consumption during tetanus of cat papillary muscle. Cooper, G. Circ. Res. (1976) [Pubmed]
  15. Effects of chronic myocardial infarction on responsiveness to isoprenaline and the state of myocardial beta adrenoceptors in rats. Clozel, J.P., Holck, M., Osterrieder, W., Burkard, W., Da Prada, M.D. Cardiovasc. Res. (1987) [Pubmed]
  16. Cardiac-specific overexpression of sarcolipin inhibits sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) activity and impairs cardiac function in mice. Asahi, M., Otsu, K., Nakayama, H., Hikoso, S., Takeda, T., Gramolini, A.O., Trivieri, M.G., Oudit, G.Y., Morita, T., Kusakari, Y., Hirano, S., Hongo, K., Hirotani, S., Yamaguchi, O., Peterson, A., Backx, P.H., Kurihara, S., Hori, M., MacLennan, D.H. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  17. Effects of K+ and K+-induced polarization on (dV/dt)max, threshold potential, and membrane input resistance in guinea pig and cat ventricular myocardium. Kishida, H., Surawicz, B., Fu, L.T. Circ. Res. (1979) [Pubmed]
  18. Inhibition of rat cardiac muscle contraction and mitochondrial respiration by endogenous peroxynitrite formation during posthypoxic reoxygenation. Xie, Y.W., Kaminski, P.M., Wolin, M.S. Circ. Res. (1998) [Pubmed]
  19. Role of an electrogenic Na(+)-HCO3- cotransport in determining myocardial pHi after an increase in heart rate. Camilión de Hurtado, M.C., Alvarez, B.V., Pérez, N.G., Cingolani, H.E. Circ. Res. (1996) [Pubmed]
  20. Electrophysiological mechanisms in a canine model of erythromycin-associated long QT syndrome. Rubart, M., Pressler, M.L., Pride, H.P., Zipes, D.P. Circulation (1993) [Pubmed]
  21. Specific block of the anti-ischemic actions of cromakalim by sodium 5-hydroxydecanoate. McCullough, J.R., Normandin, D.E., Conder, M.L., Sleph, P.G., Dzwonczyk, S., Grover, G.J. Circ. Res. (1991) [Pubmed]
  22. Endocardial endothelium modulates myofilament Ca2+ responsiveness in aequorin-loaded ferret myocardium. Wang, J., Morgan, J.P. Circ. Res. (1992) [Pubmed]
  23. Maintenance of cardiodynamics with aspirin during abdominal aortic aneurysmectomy (AAA). Utsunomiya, T., Krausz, M.M., Dunham, B., Mannick, J.A., Allen, P.D., Shepro, D., Hechtman, H.B. Ann. Surg. (1981) [Pubmed]
  24. Myocardial beta-adrenoceptor changes in heart failure: concomitant reduction in beta 1- and beta 2-adrenoceptor function related to the degree of heart failure in patients with mitral valve disease. Brodde, O.E., Zerkowski, H.R., Doetsch, N., Motomura, S., Khamssi, M., Michel, M.C. J. Am. Coll. Cardiol. (1989) [Pubmed]
  25. Myocardial performance and extracellular ionized calcium in a severely failing human heart. Ginsburg, R., Esserman, L.J., Bristow, M.R. Ann. Intern. Med. (1983) [Pubmed]
  26. Effects of new inotropic agents on cyclic nucleotide metabolism and calcium transients in canine ventricular muscle. Endoh, M., Yanagisawa, T., Taira, N., Blinks, J.R. Circulation (1986) [Pubmed]
  27. Pharmacology of the bipyridines: amrinone and milrinone. Alousi, A.A., Johnson, D.C. Circulation (1986) [Pubmed]
  28. Quantitative analysis of potassium channel mRNA expression in atrial and ventricular muscle of rats. Dixon, J.E., McKinnon, D. Circ. Res. (1994) [Pubmed]
  29. Phospholamban: a major determinant of the cardiac force-frequency relationship. Bluhm, W.F., Kranias, E.G., Dillmann, W.H., Meyer, M. Am. J. Physiol. Heart Circ. Physiol. (2000) [Pubmed]
  30. Myotonic dystrophy protein kinase expressed in rat cardiac muscle is associated with sarcoplasmic reticulum and gap junctions. Mussini, I., Biral, D., Marin, O., Furlan, S., Salvatori, S. J. Histochem. Cytochem. (1999) [Pubmed]
  31. Endothelin 1 versus endothelin 3 in the development of the slow force response to myocardial stretch. Ros, M.N., Dulce, R.A., Pérez, N.G., Camilión de Hurtado, M.C., Cingolani, H.E. The Canadian journal of cardiology. (2005) [Pubmed]
  32. Insulin-like growth factor-1 but not growth hormone augments mammalian myocardial contractility by sensitizing the myofilament to Ca2+ through a wortmannin-sensitive pathway: studies in rat and ferret isolated muscles. Cittadini, A., Ishiguro, Y., Strömer, H., Spindler, M., Moses, A.C., Clark, R., Douglas, P.S., Ingwall, J.S., Morgan, J.P. Circ. Res. (1998) [Pubmed]
  33. Chordal replacement in mitral valve repair. Frater, R.W., Vetter, H.O., Zussa, C., Dahm, M. Circulation (1990) [Pubmed]
  34. A possible role for endogenous prostaglandins in the electrophysiological effects of acetylstrophanthidin on isolated canine ventricular tissues. Moffat, M.P., Ferrier, G.R., Karmazyn, M. Circ. Res. (1986) [Pubmed]
  35. U-SPECT-I: a novel system for submillimeter-resolution tomography with radiolabeled molecules in mice. Beekman, F.J., van der Have, F., Vastenhouw, B., van der Linden, A.J., van Rijk, P.P., Burbach, J.P., Smidt, M.P. J. Nucl. Med. (2005) [Pubmed]
  36. Absence of xanthine oxidoreductase activity in human myocardium. Podzuweit, T., Beck, H., Müller, A., Bader, R., Görlach, G., Scheld, H.H. Cardiovasc. Res. (1991) [Pubmed]
  37. Studies on mechanisms of diltiazem-induced protection of the ischemic myocardium: selective myocardial depressant action of diltiazem on an ischemic isolated blood-perfused canine papillary muscle preparation. Ngai, J.H., Yabuuchi, Y., Schwartz, A., Millard, R.W. J. Pharmacol. Exp. Ther. (1983) [Pubmed]
 
WikiGenes - Universities