The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Atrioventricular Node

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Atrioventricular Node

 

Psychiatry related information on Atrioventricular Node

  • In the presence of acetylcholine released by vagal endings or infused into the coronary blood, an increase in plasma calcium concentration from 2.50 to 4.60 mmol/l after a 80 micrograms/kg dose of digoxin considerably depressed conduction in the AV node and automatism in the SA node [6].
 

High impact information on Atrioventricular Node

  • These data indicate that NKX2-5 is important for regulation of septation during cardiac morphogenesis and for maturation and maintenance of atrioventricular node function throughout life [7].
  • In addition, an entire population of connexin40(-)/connexin45(+) cells is missing in the atrioventricular node of Nkx2-5 heterozygous KO mice [8].
  • We conclude that postnatal downregulation of calreticulin is essential in the development of the cardiac conductive system, in particular in the sinus and AV nodes, when an inward Ca(2+) current is required for activation [9].
  • Our results demonstrate that the A-V node and the His-Purkinje regions of the conduction system are specifically compromised by DMPK loss [10].
  • Injections of amiodarone into the AV node artery during sinus rhythm regularly increased AV conduction time sometimes causing 2 degrees AV block at the highest concentration used [11].
 

Chemical compound and disease context of Atrioventricular Node

  • In conclusion, rate-dependent atrioventricular node depression by diltiazem results in greater tachycardia slowing and higher rates of termination during atrioventricular reentrant tachycardias with faster initial rates and shorter retrograde conduction intervals [12].
  • In a second protocol, the effects of intravenous dipyridamole were evaluated in another group of six patients who had supraventricular tachycardia (SVT) in which the AV node was part of the reentrant circuit.(ABSTRACT TRUNCATED AT 250 WORDS)[13]
  • Noninvasive diagnosis of dual AV node physiology in patients with AV nodal reentrant tachycardia by administration of adenosine-5'-triphosphate during sinus rhythm [14].
  • The results of the present study indicate that AV rhythm in the AV node originates in the area supplied by the anterior septal artery and that the area supplied by the posterior septal artery, which has extremely low automaticity, is highly responsive to l-norepinephrine, resulting in nodal tachycardia [15].
  • METHODS: In consecutive patients with AV node reentrant tachycardia, the incidence of 2:1 AV block and the response to atropine and a single ventricular extrastimulus was observed [16].
 

Biological context of Atrioventricular Node

 

Anatomical context of Atrioventricular Node

 

Associations of Atrioventricular Node with chemical compounds

  • We conclude that endogenously released adenosine may account for a major fraction of the AV conduction delay and block associated with impaired blood supply to the AV node, and the theophylline and aminophylline reverse the AV conduction defect by antagonizing the effects of adenosine [27].
  • Termination of PRJT by either ATP or verapamil was mainly related to a block in the AV node in patients with accessory pathways and to a block in the antegrade slow pathway in patients with AV nodal reentry [28].
  • BACKGROUND: ATP and its related nucleoside, adenosine, are ubiquitous biological compounds with potent depressant activity on the atrioventricular node [29].
  • Diltiazem also increased the AV conduction system effective refractory period, thereby increasing the potential zone of concealment into the AV node [30].
  • Comparative effects of three calcium antagonists, diltiazem, verapamil and nifedipine, on the sinoatrial and atrioventricular nodes. Experimental and clinical studies [31].
 

Gene context of Atrioventricular Node

  • Tyrosine hydroxylase (TH)-immunoreactive nerves were the next most abundant neural subpopulation, representing 37% of the total pattern of innervation in the compact atrioventricular node compared with 25% in the transitional nodal region [32].
  • There was a higher proportion of ETB receptors in the atrioventricular node and the penetrating and branching bundles of His than in the surrounding interventricular and interatrial septa (p < 0.0001) [33].
  • However, conduction is markedly slowed through the atrioventricular canal in the e.d. 10.5 heart, forming the basis for an effective atrioventricular delay before development of the AV node, as rapid ventricular activation occurs after activation of the distal AV canal tissue [34].
  • Atrial ERP was reached before AV node ERP in 2 (22%) of 9 of the knockout mice and 5 (71%) of 7 of the controls (P = 0.06) [35].
  • No increased or aberrant expression of Ro/SS-A or La/SS-B was observed in either neonatal or adult atrioventricular nodes and bundle branches [36].
 

Analytical, diagnostic and therapeutic context of Atrioventricular Node

References

  1. Intravenous propafenone for termination of reentrant supraventricular tachycardia. A placebo-controlled, randomized, double-blind, crossover study. Shen, E.N., Keung, E., Huycke, E., Dohrmann, M.L., Nguyen, N., Morady, F., Sung, R.J. Ann. Intern. Med. (1986) [Pubmed]
  2. Adenosine for paroxysmal supraventricular tachycardia: dose ranging and comparison with verapamil. Assessment in placebo-controlled, multicenter trials. The Adenosine for PSVT Study Group. DiMarco, J.P., Miles, W., Akhtar, M., Milstein, S., Sharma, A.D., Platia, E., McGovern, B., Scheinman, M.M., Govier, W.C. Ann. Intern. Med. (1990) [Pubmed]
  3. Use of calcium channel entry blockers in the treatment of cardiac arrhythmias. Akhtar, M., Tchou, P., Jazayeri, M. Circulation (1989) [Pubmed]
  4. Effects of flecainide on the rate dependence of atrial refractoriness, atrial repolarization and atrioventricular node conduction in anesthetized dogs. O'Hara, G., Villemaire, C., Talajic, M., Nattel, S. J. Am. Coll. Cardiol. (1992) [Pubmed]
  5. Electrophysiologic effects of epinephrine in humans. Morady, F., Nelson, S.D., Kou, W.H., Pratley, R., Schmaltz, S., De Buitleir, M., Halter, J.B. J. Am. Coll. Cardiol. (1988) [Pubmed]
  6. Vagal role in potentiation by Ca2+ ions of the action of cardiac glycosides on the atrial specialised tissue. Lang, J., Lakhal, M., Timour Chah, Q., Faucon, G. Journal de pharmacologie. (1985) [Pubmed]
  7. Congenital heart disease caused by mutations in the transcription factor NKX2-5. Schott, J.J., Benson, D.W., Basson, C.T., Pease, W., Silberbach, G.M., Moak, J.P., Maron, B.J., Seidman, C.E., Seidman, J.G. Science (1998) [Pubmed]
  8. Nkx2-5 mutation causes anatomic hypoplasia of the cardiac conduction system. Jay, P.Y., Harris, B.S., Maguire, C.T., Buerger, A., Wakimoto, H., Tanaka, M., Kupershmidt, S., Roden, D.M., Schultheiss, T.M., O'Brien, T.X., Gourdie, R.G., Berul, C.I., Izumo, S. J. Clin. Invest. (2004) [Pubmed]
  9. Complete heart block and sudden death in mice overexpressing calreticulin. Nakamura, K., Robertson, M., Liu, G., Dickie, P., Nakamura, K., Guo, J.Q., Duff, H.J., Opas, M., Kavanagh, K., Michalak, M. J. Clin. Invest. (2001) [Pubmed]
  10. DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model. Berul, C.I., Maguire, C.T., Aronovitz, M.J., Greenwood, J., Miller, C., Gehrmann, J., Housman, D., Mendelsohn, M.E., Reddy, S. J. Clin. Invest. (1999) [Pubmed]
  11. Acute effects of amiodarone upon the canine sinus node and atrioventricular junctional region. Gloor, H.O., Urthaler, F., James, T.N. J. Clin. Invest. (1983) [Pubmed]
  12. Antiarrhythmic actions of diltiazem during experimental atrioventricular reentrant tachycardias. Importance of use-dependent calcium channel-blocking properties. Talajic, M., Papadatos, D., Villemaire, C., Nayebpour, M., Nattel, S. Circulation (1990) [Pubmed]
  13. Electrophysiologic effects of dipyridamole on atrioventricular nodal conduction and supraventricular tachycardia. Role of endogenous adenosine. Lerman, B.B., Wesley, R.C., Belardinelli, L. Circulation (1989) [Pubmed]
  14. Noninvasive diagnosis of dual AV node physiology in patients with AV nodal reentrant tachycardia by administration of adenosine-5'-triphosphate during sinus rhythm. Belhassen, B., Fish, R., Glikson, M., Glick, A., Eldar, M., Laniado, S., Viskin, S. Circulation (1998) [Pubmed]
  15. Effects of neurotransmitters injected into the posterior and the anterior septal artery on the automaticity of the atrioventricular junctional area of the dog heart. Motomura, S., Iijima, T., Taira, N., Hashimoto, K. Circ. Res. (1975) [Pubmed]
  16. 2:1 atrioventricular block during atrioventricular node reentrant tachycardia. Man, K.C., Brinkman, K., Bogun, F., Knight, B., Bahu, M., Weiss, R., Goyal, R., Harvey, M., Daoud, E.G., Strickberger, S.A., Morady, F. J. Am. Coll. Cardiol. (1996) [Pubmed]
  17. Adenosine increases potassium conductance in isolated rabbit atrioventricular nodal myocytes. Martynyuk, A.E., Kane, K.A., Cobbe, S.M., Rankin, A.C. Cardiovasc. Res. (1995) [Pubmed]
  18. 2-Alkoxyadenosines: potent and selective agonists at the coronary artery A2 adenosine receptor. Ueeda, M., Thompson, R.D., Arroyo, L.H., Olsson, R.A. J. Med. Chem. (1991) [Pubmed]
  19. Effects of TTX and verapamil on the upstroke components of the action potential from the atrioventricular node of the rabbit. Ruiz-Ceretti, E., Ponce Zumino, A., Schanne, O.F. J. Mol. Cell. Cardiol. (1978) [Pubmed]
  20. Regulation of cardiac output with controlled heart rate in newborn lambs. Shaddy, R.E., Tyndall, M.R., Teitel, D.F., Li, C., Rudolph, A.M. Pediatr. Res. (1988) [Pubmed]
  21. The effects of l-propranolol and practolol on atrial and nodal transmembrane potentials. Freeman, S.E., Turner, R.J. J. Pharmacol. Exp. Ther. (1975) [Pubmed]
  22. Preoperative secundum atrial septal defect with coexisting sinus node and atrioventricular node dysfunction. Clark, E.B., Kugler, J.D. Circulation (1982) [Pubmed]
  23. Primary oxalosis with pan-conduction cardiac disease: electrophysiologic and anatomic correlation. Massie, B.M., Bharati, S., Scheinman, M.M., Lev, M., Desai, J., Rubeson, E., Schmidt, W. Circulation (1981) [Pubmed]
  24. Reduced cardiac conduction velocity and predisposition to arrhythmias in connexin40-deficient mice. Kirchhoff, S., Nelles, E., Hagendorff, A., Krüger, O., Traub, O., Willecke, K. Curr. Biol. (1998) [Pubmed]
  25. A prospective evaluation of intracoronary ethanol ablation of the atrioventricular conduction system. Kay, G.N., Bubien, R.S., Dailey, S.M., Epstein, A.E., Plumb, V.J. J. Am. Coll. Cardiol. (1991) [Pubmed]
  26. Pharmacological classification of adenosine receptors in the sinoatrial and atrioventricular nodes of the guinea-pig. Meester, B.J., Shankley, N.P., Welsh, N.J., Wood, J., Meijler, F.L., Black, J.W. Br. J. Pharmacol. (1998) [Pubmed]
  27. Evidence for adenosine mediation of atrioventricular block in the ischemic canine myocardium. Belardinelli, L., Mattos, E.C., Berne, R.M. J. Clin. Invest. (1981) [Pubmed]
  28. Comparative clinical and electrophysiologic effects of adenosine triphosphate and verapamil on paroxysmal reciprocating junctional tachycardia. Belhassen, B., Glick, A., Laniado, S. Circulation (1988) [Pubmed]
  29. Adenosine-induced atrioventricular block in patients with unexplained syncope: the diagnostic value of ATP testing. Brignole, M., Gaggioli, G., Menozzi, C., Gianfranchi, L., Bartoletti, A., Bottoni, N., Lolli, G., Oddone, D., Del Rosso, A., Pellinghelli, G. Circulation (1997) [Pubmed]
  30. Frequency-dependent effects of diltiazem on the atrioventricular node during experimental atrial fibrillation. Talajic, M., Nayebpour, M., Jing, W., Nattel, S. Circulation (1989) [Pubmed]
  31. Comparative effects of three calcium antagonists, diltiazem, verapamil and nifedipine, on the sinoatrial and atrioventricular nodes. Experimental and clinical studies. Kawai, C., Konishi, T., Matsuyama, E., Okazaki, H. Circulation (1981) [Pubmed]
  32. Localisation and quantitation of autonomic innervation in the porcine heart I: conduction system. Crick, S.J., Sheppard, M.N., Ho, S.Y., Anderson, R.H. J. Anat. (1999) [Pubmed]
  33. Characterization and localization of endothelin receptor subtypes in the human atrioventricular conducting system and myocardium. Molenaar, P., O'Reilly, G., Sharkey, A., Kuc, R.E., Harding, D.P., Plumpton, C., Gresham, G.A., Davenport, A.P. Circ. Res. (1993) [Pubmed]
  34. Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Tallini, Y.N., Ohkura, M., Choi, B.R., Ji, G., Imoto, K., Doran, R., Lee, J., Plan, P., Wilson, J., Xin, H.B., Sanbe, A., Gulick, J., Mathai, J., Robbins, J., Salama, G., Nakai, J., Kotlikoff, M.I. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  35. Localization of the sites of conduction abnormalities in a mouse model of myotonic dystrophy. Saba, S., Vanderbrink, B.A., Luciano, B., Aronovitz, M.J., Berul, C.I., Reddy, S., Housman, D., Mendelsohn, M.E., Estes, N.A., Wang, P.J. J. Cardiovasc. Electrophysiol. (1999) [Pubmed]
  36. Expression of Ro/SS-A and La/SS-B determined by immunohistochemistry in healthy, inflamed and autoimmune diseased human tissues: a generalized phenomenon. van Woerkom, J.M., Geertzema, J.G., Nikkels, P.G., Kruize, A.A., Smeenk, R.J., Vroom, T.M. Clinical and experimental rheumatology. (2004) [Pubmed]
  37. Electrophysiological effects of adenosine in the transplanted human heart. Evidence of supersensitivity. Ellenbogen, K.A., Thames, M.D., DiMarco, J.P., Sheehan, H., Lerman, B.B. Circulation (1990) [Pubmed]
  38. Control of rapid ventricular response by radiofrequency catheter modification of the atrioventricular node in patients with medically refractory atrial fibrillation. Feld, G.K., Fleck, R.P., Fujimura, O., Prothro, D.L., Bahnson, T.D., Ibarra, M. Circulation (1994) [Pubmed]
  39. Selective vagal denervation of the atria eliminates heart rate variability and baroreflex sensitivity while preserving ventricular innervation. Chiou, C.W., Zipes, D.P. Circulation (1998) [Pubmed]
  40. Characterization of beta 1- and beta 2-adrenoceptor subtypes in the rat atrioventricular node by quantitative autoradiography. Saito, K., Kurihara, M., Cruciani, R., Potter, W.Z., Saavedra, J.M. Circ. Res. (1988) [Pubmed]
  41. Reversibility of tachycardia-induced cardiomyopathy after cure of incessant supraventricular tachycardia. Cruz, F.E., Cheriex, E.C., Smeets, J.L., Atié, J., Peres, A.K., Penn, O.C., Brugada, P., Wellens, H.J. J. Am. Coll. Cardiol. (1990) [Pubmed]
 
WikiGenes - Universities