The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Mmp2  -  matrix metallopeptidase 2

Rattus norvegicus

Synonyms: 72 kDa gelatinase, 72 kDa type IV collagenase, Gelatinase A, MMP-2, Matrix metalloproteinase-2
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Mmp2


Psychiatry related information on Mmp2


High impact information on Mmp2

  • CONCLUSIONS: Monocrotaline causes depolymerization of F-actin in sinusoidal endothelial cells, which leads to increased expression of metalloproteinase-9 and matrix metalloproteinase-2 by sinusoidal endothelial cells [7].
  • In vitro studies of sinusoidal endothelial cells, hepatocytes, stellate cells, and Kupffer cells showed that sinusoidal endothelial cells are the major source of both basal and monocrotaline-induced matrix metalloproteinase-9/matrix metalloproteinase-2 activity [7].
  • Inhibition of matrix metalloproteinase-9 and matrix metalloproteinase-2 prevents the development of sinusoidal obstruction syndrome, establishing that matrix metalloproteinase inhibitors may be a therapeutically viable strategy for prevention [7].
  • Migration induced by PDGF-BB, TGF-beta1, and collagen I could be inhibited by alpha(1)- and/or alpha(2)-integrin blocking antibodies, collectively suggesting an integrin-dependent, MMP-2-mediated migration of HSCs [8].
  • RESULTS: Captopril treatment significantly reduced hepatic hydroxyproline levels, mean fibrosis score, steady state messenger RNA levels of TGF-beta1 and procollagen alpha1(I), and matrix metalloproteinase 2 and 9 activity [9].

Chemical compound and disease context of Mmp2


Biological context of Mmp2


Anatomical context of Mmp2


Associations of Mmp2 with chemical compounds

  • Studies using the transcription inhibitor actinomycin D (ActD) added 24 h after irradiation revealed the t(1/2) of Mmp2 mRNA to be approximately 8 h in control cells [15].
  • Both ethanol and its metabolite acetaldehyde increase MMP2 as well as TIMP2 secretion by PSCs [20].
  • There was a correlation between the levels of gelatinase A at 3 hours and the sucrose uptake (P<0.05) [21].
  • Both of these proteinases were present at the site of LPS injection at 8 h, but MMP-2 was absent [22].
  • Terazosin modifies the content of glycosaminoglycans and the activity of matrix metalloproteinase 2 in the rat ventral prostate [23].

Physical interactions of Mmp2

  • Together, these results indicate GATA-2 regulation of the MMP-2 promoter in endothelial cells and that the GATA-2 binding domain is sufficient to drive increased activity of the MMP-2 promoter in response to an extracellular matrix stimulus [24].
  • Vitronectin receptor (alpha(v)beta(3)) blockade interferes with binding of this integrin to MMP-2 and proteolyzed collagen, thereby reducing cell invasion [25].

Regulatory relationships of Mmp2

  • Treatment of HSCs with concanavalin A (con A) induced activation of MT1-MMP and enhanced secretion of activated gelatinase A, which reached a maximum of 44.4% of the total enzyme secreted into culture supernatants using 30 microgram/mL con A [26].
  • We further studied the mechanisms involved in the regulation of MMP-2 mRNA levels and found that the AP-2 transcription factor is responsible for most of the CTGF-induced MMP-2 transcription [27].
  • IL-10 exhibits an antifibrogenic effect by suppressing MMP-2 and TIMP-1 expression [28].
  • Thus, MMP-2-activated TGF-beta1, and subsequently TbetaRII signaling, is a novel molecular mechanism for arterial aging [29].
  • Stromelysin-1 and gelatinase A are upregulated before TNF-alpha in LPS-stimulated neuroinflammation [22].

Other interactions of Mmp2


Analytical, diagnostic and therapeutic context of Mmp2


  1. Rat hepatic stellate cells contribute to the acute-phase response with increased expression of alpha1(I) and alpha1(IV) collagens, tissue inhibitor of metalloproteinase-1, and matrix-metalloproteinase-2 messenger RNAs. Nieto, N., Dominguez-Rosales, J.A., Fontana, L., Salazar, A., Armendariz-Borunda, J., Greenwel, P., Rojkind, M. Hepatology (2001) [Pubmed]
  2. Gelatinase A (MMP-2) is necessary and sufficient for renal tubular cell epithelial-mesenchymal transformation. Cheng, S., Lovett, D.H. Am. J. Pathol. (2003) [Pubmed]
  3. Combinatorial interactions of p53, activating protein-2, and YB-1 with a single enhancer element regulate gelatinase A expression in neoplastic cells. Mertens, P.R., Steinmann, K., Alfonso-Jaume, M.A., En-Nia, A., Sun, Y., Lovett, D.H. J. Biol. Chem. (2002) [Pubmed]
  4. Differential regulation of matrix metalloproteinase-2 and -9 expression and activity in adult rat cardiac fibroblasts in response to interleukin-1beta. Xie, Z., Singh, M., Singh, K. J. Biol. Chem. (2004) [Pubmed]
  5. Alterations induced by cyclosporine A in myocardial fibers and extracellular matrix in rat. Rezzani, R., Angoscini, P., Rodella, L., Bianchi, R. Histol. Histopathol. (2002) [Pubmed]
  6. Long-term alcohol consumption increases matrix metalloproteinase-2 activity in rat aorta. Partridge, C.R., Sampson, H.W., Forough, R. Life Sci. (1999) [Pubmed]
  7. Sinusoidal obstruction syndrome (veno-occlusive disease) in the rat is prevented by matrix metalloproteinase inhibition. Deleve, L.D., Wang, X., Tsai, J., Kanel, G., Strasberg, S., Tokes, Z.A. Gastroenterology (2003) [Pubmed]
  8. Liver fibrosis: insights into migration of hepatic stellate cells in response to extracellular matrix and growth factors. Yang, C., Zeisberg, M., Mosterman, B., Sudhakar, A., Yerramalla, U., Holthaus, K., Xu, L., Eng, F., Afdhal, N., Kalluri, R. Gastroenterology (2003) [Pubmed]
  9. Angiotensin-converting enzyme inhibition attenuates the progression of rat hepatic fibrosis. Jonsson, J.R., Clouston, A.D., Ando, Y., Kelemen, L.I., Horn, M.J., Adamson, M.D., Purdie, D.M., Powell, E.E. Gastroenterology (2001) [Pubmed]
  10. Effects of hypoxia, hyperoxia on the regulation of expression and activity of matrix metalloproteinase-2 in hepatic stellate cells. Chen, P.S., Zhai, W.R., Zhou, X.M., Zhang, J.S., Zhang, Y.E., Ling, Y.Q., Gu, Y.H. World J. Gastroenterol. (2001) [Pubmed]
  11. Long-term overexpression of membrane type-1 matrix metalloproteinase and matrix metalloproteinase-2 in oleic acid-induced pancreatitis in rats. Yamaguchi, T., Nakamura, H., Kihara, Y., Taguchi, M., Yoshikawa, H., Otsuki, M. Pancreas (2002) [Pubmed]
  12. Effects of benazepril on renal function and kidney expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 in diabetic rats. Sun, S.Z., Wang, Y., Li, Q., Tian, Y.J., Liu, M.H., Yu, Y.H. Chin. Med. J. (2006) [Pubmed]
  13. Alterations in vascular matrix metalloproteinase due to ageing and chronic hypertension: effects of endothelin receptor blockade. Spiers, J.P., Kelso, E.J., Siah, W.F., Edge, G., Song, G., McDermott, B.J., Hennessy, M. J. Hypertens. (2005) [Pubmed]
  14. L-arginine attenuates acute pulmonary embolism-induced increases in lung matrix metalloproteinase-2 and matrix metalloproteinase-9. Souza-Costa, D.C., Zerbini, T., Palei, A.C., Gerlach, R.F., Tanus-Santos, J.E. Chest (2005) [Pubmed]
  15. Radiation-induced up-regulation of Mmp2 involves increased mRNA stability, redox modulation, and MAPK activation. Zhao, W., Goswami, P.C., Robbins, M.E. Radiat. Res. (2004) [Pubmed]
  16. TGF-beta plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the activity of the matrix metalloproteinase MMP-2. Miralles, F., Battelino, T., Czernichow, P., Scharfmann, R. J. Cell Biol. (1998) [Pubmed]
  17. Matrix metalloproteinase 2 (gelatinase A) regulates glomerular mesangial cell proliferation and differentiation. Turck, J., Pollock, A.S., Lee, L.K., Marti, H.P., Lovett, D.H. J. Biol. Chem. (1996) [Pubmed]
  18. Type I collagen-induced MMP-2 activation coincides with up-regulation of membrane type 1-matrix metalloproteinase and TIMP-2 in cardiac fibroblasts. Guo, C., Piacentini, L. J. Biol. Chem. (2003) [Pubmed]
  19. Increased expression of membrane-type matrix metalloproteinase and preferential localization of matrix metalloproteinase-2 to the neointima of balloon-injured rat carotid arteries. Jenkins, G.M., Crow, M.T., Bilato, C., Gluzband, Y., Ryu, W.S., Li, Z., Stetler-Stevenson, W., Nater, C., Froehlich, J.P., Lakatta, E.G., Cheng, L. Circulation (1998) [Pubmed]
  20. Rat pancreatic stellate cells secrete matrix metalloproteinases: implications for extracellular matrix turnover. Phillips, P.A., McCarroll, J.A., Park, S., Wu, M.J., Pirola, R., Korsten, M., Wilson, J.S., Apte, M.V. Gut (2003) [Pubmed]
  21. Matrix metalloproteinases and TIMPs are associated with blood-brain barrier opening after reperfusion in rat brain. Rosenberg, G.A., Estrada, E.Y., Dencoff, J.E. Stroke (1998) [Pubmed]
  22. Stromelysin-1 and gelatinase A are upregulated before TNF-alpha in LPS-stimulated neuroinflammation. Mun-Bryce, S., Lukes, A., Wallace, J., Lukes-Marx, M., Rosenberg, G.A. Brain Res. (2002) [Pubmed]
  23. Terazosin modifies the content of glycosaminoglycans and the activity of matrix metalloproteinase 2 in the rat ventral prostate. Mitropoulos, D., Papakonstantinou, E., Aletras, A.J., Kalinderis, N., Zervas, A., Hatzichristou, D., Karakiulakis, G. Eur. Urol. (2007) [Pubmed]
  24. Transcriptional up-regulation of endothelial cell matrix metalloproteinase-2 in response to extracellular cues involves GATA-2. Han, X., Boyd, P.J., Colgan, S., Madri, J.A., Haas, T.L. J. Biol. Chem. (2003) [Pubmed]
  25. Metalloproteinase inhibitor attenuates neointima formation and constrictive remodeling after angioplasty in rats: augmentative effect of alpha(v)beta(3) receptor blockade. Margolin, L., Fishbein, I., Banai, S., Golomb, G., Reich, R., Perez, L.S., Gertz, S.D. Atherosclerosis (2002) [Pubmed]
  26. Progelatinase A is produced and activated by rat hepatic stellate cells and promotes their proliferation. Benyon, R.C., Hovell, C.J., Da Gaça, M., Jones, E.H., Iredale, J.P., Arthur, M.J. Hepatology (1999) [Pubmed]
  27. Increased MMP-2 expression in connective tissue growth factor over-expression vascular smooth muscle cells. Fan, W.H., Karnovsky, M.J. J. Biol. Chem. (2002) [Pubmed]
  28. Expression of matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-1 in hepatic stellate cells during rat hepatic fibrosis and its intervention by IL-10. Zheng, W.D., Zhang, L.J., Shi, M.N., Chen, Z.X., Chen, Y.X., Huang, Y.H., Wang, X.Z. World J. Gastroenterol. (2005) [Pubmed]
  29. Matrix metalloproteinase 2 activation of transforming growth factor-beta1 (TGF-beta1) and TGF-beta1-type II receptor signaling within the aged arterial wall. Wang, M., Zhao, D., Spinetti, G., Zhang, J., Jiang, L.Q., Pintus, G., Monticone, R., Lakatta, E.G. Arterioscler. Thromb. Vasc. Biol. (2006) [Pubmed]
  30. Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Peterson, J.T., Li, H., Dillon, L., Bryant, J.W. Cardiovasc. Res. (2000) [Pubmed]
  31. Activation of matrix metalloproteinase-2 from hepatic stellate cells requires interactions with hepatocytes. Théret, N., Musso, O., L'Helgoualc'h, A., Clément, B. Am. J. Pathol. (1997) [Pubmed]
  32. Domain interactions in the gelatinase A.TIMP-2.MT1-MMP activation complex. The ectodomain of the 44-kDa form of membrane type-1 matrix metalloproteinase does not modulate gelatinase A activation. Overall, C.M., Tam, E., McQuibban, G.A., Morrison, C., Wallon, U.M., Bigg, H.F., King, A.E., Roberts, C.R. J. Biol. Chem. (2000) [Pubmed]
  33. Gelatinases A and B are up-regulated in rat lungs by subacute hyperoxia: pathogenetic implications. Pardo, A., Barrios, R., Maldonado, V., Meléndez, J., Pérez, J., Ruiz, V., Segura-Valdez, L., Sznajder, J.I., Selman, M. Am. J. Pathol. (1998) [Pubmed]
WikiGenes - Universities