The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Valspodar     (3S,6S,9S,12R,15S,18S,21S,24S, 30S,33S)-1,4...

Synonyms: Amdray, Sdz-psc-833, SDZ-PSC 833, PSC-833, Amdray (TN), ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Valspodar

 

High impact information on Valspodar

 

Chemical compound and disease context of Valspodar

 

Biological context of Valspodar

  • Data for the pharmacokinetics of paclitaxel with and without concurrent PSC 833 administration were obtained [3].
  • Twenty-one patients (49%) achieved a complete remission or restored chronic phase, including 10 of 20 patients treated at the maximum-tolerated dose of 10 mg/kg/d of PSC-833 and 45 mg/m(2) of DNR [13].
  • The capacity of PSC 833 to reverse drug resistance was demonstrated with vinblastine [8].
  • The effect of valspodar was evaluated from the ratio of the area under the curve (AUC) for dnr concentration versus time in leukemic cells to the AUC for dnr concentration against time in the plasma [14].
  • Population pharmacokinetic analysis demonstrated that the clearances of mitoxantrone and etoposide were decreased by 59% and 50%, respectively, supporting the empiric dose reductions in the PSC-MEC arm designed in anticipation of drug interactions between valspodar and the chemotherapeutic agents [15].
 

Anatomical context of Valspodar

  • Both 4 mumol/L CsA and 4 mumol/L SDZ PSC 833 significantly and specifically enhanced the cytotoxic activity of T101 RTA-IT on the human lymphoblastic T-cell line, CEM III (101-fold and 105-fold, respectively) [16].
  • The Rh123 efflux of NK cells was inhibited by cyclosporin A (CsA) and its analogue PSC 833, but the aggressive NK tumor cells were less inhibited than were the other NK cells [17].
  • PSC 833, a nonimmunosuppressive CsA analogue, did not alter the cytotoxicity of DOX or MX in these cell lines, but potentiated VCR cytotoxicity in GLC4-Adr at a concentration of 0.4 microM [18].
  • (2) In mesangial cells stimulated with A23187, the secretion of endogenously produced PAF was inhibited by >80% by the Pgp blockers verapamil, cyclosporin A, PSC-833, vinblastine, and adriamycin [19].
  • Human liver microsome experiments showed that a PSC 833 concentration as high as 10 microM did not affect the production of 6alpha-hydroxypaclitaxel [20].
 

Associations of Valspodar with other chemical compounds

 

Gene context of Valspodar

 

Analytical, diagnostic and therapeutic context of Valspodar

References

  1. Phase 3 study of the multidrug resistance modulator PSC-833 in previously untreated patients 60 years of age and older with acute myeloid leukemia: Cancer and Leukemia Group B Study 9720. Baer, M.R., George, S.L., Dodge, R.K., O'Loughlin, K.L., Minderman, H., Caligiuri, M.A., Anastasi, J., Powell, B.L., Kolitz, J.E., Schiffer, C.A., Bloomfield, C.D., Larson, R.A. Blood (2002) [Pubmed]
  2. Treatment of refractory and relapsed acute myelogenous leukemia with combination chemotherapy plus the multidrug resistance modulator PSC 833 (Valspodar). Advani, R., Saba, H.I., Tallman, M.S., Rowe, J.M., Wiernik, P.H., Ramek, J., Dugan, K., Lum, B., Villena, J., Davis, E., Paietta, E., Litchman, M., Sikic, B.I., Greenberg, P.L. Blood (1999) [Pubmed]
  3. Phase I study of paclitaxel in combination with a multidrug resistance modulator, PSC 833 (Valspodar), in refractory malignancies. Fracasso, P.M., Westervelt, P., Fears, C.L., Rosen, D.M., Zuhowski, E.G., Cazenave, L.A., Litchman, M., Egorin, M.J., Westerveldt, P., Fears, C.A. J. Clin. Oncol. (2000) [Pubmed]
  4. Phase II study of paclitaxel and valspodar (PSC 833) in refractory ovarian carcinoma: a gynecologic oncology group study. Fracasso, P.M., Brady, M.F., Moore, D.H., Walker, J.L., Rose, P.G., Letvak, L., Grogan, T.M., McGuire, W.P. J. Clin. Oncol. (2001) [Pubmed]
  5. Decreased mutation rate for cellular resistance to doxorubicin and suppression of mdr1 gene activation by the cyclosporin PSC 833. Beketic-Oreskovic, L., Durán, G.E., Chen, G., Dumontet, C., Sikic, B.I. J. Natl. Cancer Inst. (1995) [Pubmed]
  6. Restoration of taxol sensitivity of multidrug-resistant cells by the cyclosporine SDZ PSC 833 and the cyclopeptolide SDZ 280-446. Jachez, B., Nordmann, R., Loor, F. J. Natl. Cancer Inst. (1993) [Pubmed]
  7. P-glycoprotein plays a drug-efflux-independent role in augmenting cell survival in acute myeloblastic leukemia and is associated with modulation of a sphingomyelin-ceramide apoptotic pathway. Pallis, M., Russell, N. Blood (2000) [Pubmed]
  8. SDZ PSC 833, the cyclosporine A analogue and multidrug resistance modulator, activates ceramide synthesis and increases vinblastine sensitivity in drug-sensitive and drug-resistant cancer cells. Cabot, M.C., Giuliano, A.E., Han, T.Y., Liu, Y.Y. Cancer Res. (1999) [Pubmed]
  9. Phase I dose-finding and pharmacokinetic study of paclitaxel and carboplatin with oral valspodar in patients with advanced solid tumors. Patnaik, A., Warner, E., Michael, M., Egorin, M.J., Moore, M.J., Siu, L.L., Fracasso, P.M., Rivkin, S., Kerr, I., Litchman, M., Oza, A.M. J. Clin. Oncol. (2000) [Pubmed]
  10. Dose escalation studies of cytarabine, daunorubicin, and etoposide with and without multidrug resistance modulation with PSC-833 in untreated adults with acute myeloid leukemia younger than 60 years: final induction results of Cancer and Leukemia Group B Study 9621. Kolitz, J.E., George, S.L., Dodge, R.K., Hurd, D.D., Powell, B.L., Allen, S.L., Velez-Garcia, E., Moore, J.O., Shea, T.C., Hoke, E., Caligiuri, M.A., Vardiman, J.W., Bloomfield, C.D., Larson, R.A. J. Clin. Oncol. (2004) [Pubmed]
  11. Multidrug-resistant human sarcoma cells with a mutant P-glycoprotein, altered phenotype, and resistance to cyclosporins. Chen, G., Durán, G.E., Steger, K.A., Lacayo, N.J., Jaffrézou, J.P., Dumontet, C., Sikic, B.I. J. Biol. Chem. (1997) [Pubmed]
  12. HIV-1 viral envelope glycoprotein gp120 triggers an inflammatory response in cultured rat astrocytes and regulates the functional expression of P-glycoprotein. Ronaldson, P.T., Bendayan, R. Mol. Pharmacol. (2006) [Pubmed]
  13. Phase I/II study of the P-glycoprotein modulator PSC 833 in patients with acute myeloid leukemia. Dorr, R., Karanes, C., Spier, C., Grogan, T., Greer, J., Moore, J., Weinberger, B., Schiller, G., Pearce, T., Litchman, M., Dalton, W., Roe, D., List, A.F. J. Clin. Oncol. (2001) [Pubmed]
  14. P-Glycoprotein inhibitor valspodar (PSC 833) increases the intracellular concentrations of daunorubicin in vivo in patients with P-glycoprotein-positive acute myeloid leukemia. Tidefelt, U., Liliemark, J., Gruber, A., Liliemark, E., Sundman-Engberg, B., Juliusson, G., Stenke, L., Elmhorn-Rosenborg, A., Möllgård, L., Lehman, S., Xu, D., Covelli, A., Gustavsson, B., Paul, C. J. Clin. Oncol. (2000) [Pubmed]
  15. Mitoxantrone, etoposide, and cytarabine with or without valspodar in patients with relapsed or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome: a phase III trial (E2995). Greenberg, P.L., Lee, S.J., Advani, R., Tallman, M.S., Sikic, B.I., Letendre, L., Dugan, K., Lum, B., Chin, D.L., Dewald, G., Paietta, E., Bennett, J.M., Rowe, J.M. J. Clin. Oncol. (2004) [Pubmed]
  16. Cyclosporin A and cyclosporin SDZ PSC 833 enhance anti-CD5 ricin A-chain immunotoxins in human leukemic T cells. Jaffrézou, J.P., Sikic, B.I., Laurent, G. Blood (1994) [Pubmed]
  17. P-glycoprotein expression on normal and abnormally expanded natural killer cells and inhibition of P-glycoprotein function by cyclosporin A and its analogue, PSC833. Egashira, M., Kawamata, N., Sugimoto, K., Kaneko, T., Oshimi, K. Blood (1999) [Pubmed]
  18. Effects of amiodarone, cyclosporin A, and PSC 833 on the cytotoxicity of mitoxantrone, doxorubicin, and vincristine in non-P-glycoprotein human small cell lung cancer cell lines. van der Graaf, W.T., de Vries, E.G., Timmer-Bosscha, H., Meersma, G.J., Mesander, G., Vellenga, E., Mulder, N.H. Cancer Res. (1994) [Pubmed]
  19. Secretion of platelet-activating factor is mediated by MDR1 P-glycoprotein in cultured human mesangial cells. Ernest, S., Bello-Reuss, E. J. Am. Soc. Nephrol. (1999) [Pubmed]
  20. The P-glycoprotein antagonist PSC 833 increases the plasma concentrations of 6alpha-hydroxypaclitaxel, a major metabolite of paclitaxel. Kang, M.H., Figg, W.D., Ando, Y., Blagosklonny, M.V., Liewehr, D., Fojo, T., Bates, S.E. Clin. Cancer Res. (2001) [Pubmed]
  21. Efflux of rhodamine from CD56+ cells as a surrogate marker for reversal of P-glycoprotein-mediated drug efflux by PSC 833. Robey, R., Bakke, S., Stein, W., Meadows, B., Litman, T., Patil, S., Smith, T., Fojo, T., Bates, S. Blood (1999) [Pubmed]
  22. Clinical modulation of multidrug resistance in multiple myeloma: effect of cyclosporine on resistant tumor cells. Sonneveld, P., Schoester, M., de Leeuw, K. J. Clin. Oncol. (1994) [Pubmed]
  23. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. Smith, A.J., van Helvoort, A., van Meer, G., Szabo, K., Welker, E., Szakacs, G., Varadi, A., Sarkadi, B., Borst, P. J. Biol. Chem. (2000) [Pubmed]
  24. Selective inhibition of human cytochrome P450 3A4 by N-[2(R)-hydroxy-1(S)-indanyl]-5-[2(S)-(1, 1-dimethylethylaminocarbonyl)-4-[(furo[2, 3-b]pyridin-5-yl)methyl]piperazin-1-yl]-4(S)-hydroxy-2(R)-phenylmethy lpentanamide and P-glycoprotein by valspodar in gene transfectant systems. Kawahara, I., Kato, Y., Suzuki, H., Achira, M., Ito, K., Crespi, C.L., Sugiyama, Y. Drug Metab. Dispos. (2000) [Pubmed]
  25. Multidrug resistance modulators PSC 833 and CsA show differential capacity to induce apoptosis in lymphoid leukemia cell lines independently of their MDR phenotype. Lopes, E.C., Garcia, M., Benavides, F., Shen, J., Conti, C.J., Alvarez, E., Hajos, S.E. Leuk. Res. (2003) [Pubmed]
  26. Functional analysis of P-glycoprotein and multidrug resistance associated protein related multidrug resistance in AML-blasts. Brügger, D., Herbart, H., Gekeler, V., Seitz, G., Liu, C., Klingebiel, T., Orlikowsky, T., Einsele, H., Denzlinger, C., Bader, P., Niethammer, D., Beck, J.F. Leuk. Res. (1999) [Pubmed]
  27. Effect of the Mdr1a P-glycoprotein gene disruption on the tissue distribution of SDZ PSC 833, a multidrug resistance-reversing agent, in mice. Desrayaud, S., De Lange, E.C., Lemaire, M., Bruelisauer, A., De Boer, A.G., Breimer, D.D. J. Pharmacol. Exp. Ther. (1998) [Pubmed]
  28. Technology evaluation: Valspodar, Novartis AG. Tai, H.L. Curr. Opin. Mol. Ther. (2000) [Pubmed]
  29. Phase I study of infusional paclitaxel in combination with the P-glycoprotein antagonist PSC 833. Chico, I., Kang, M.H., Bergan, R., Abraham, J., Bakke, S., Meadows, B., Rutt, A., Robey, R., Choyke, P., Merino, M., Goldspiel, B., Smith, T., Steinberg, S., Figg, W.D., Fojo, T., Bates, S. J. Clin. Oncol. (2001) [Pubmed]
  30. Functional role of P-glycoprotein in the human blood-placental barrier. Mölsä, M., Heikkinen, T., Hakkola, J., Hakala, K., Wallerman, O., Wadelius, M., Wadelius, C., Laine, K. Clin. Pharmacol. Ther. (2005) [Pubmed]
 
WikiGenes - Universities