The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Sarcoma


Psychiatry related information on Sarcoma


High impact information on Sarcoma


Chemical compound and disease context of Sarcoma

  • To explore the generality of the effects of sarcoma viruses, tumor-promoting phorbol esters and retinoic acid, we have studied plasminogen activator production in differentiating chick myogenic cultures [12].
  • The 130 kd transforming protein of Fujinami sarcoma virus (FSV P130gag -fps) possesses a tyrosine-specific protein kinase activity and is itself phosphorylated at several tyrosine and serine residues in FSV-transformed cells [13].
  • Thoracic soft-tissue sarcoma in Vietnam veterans exposed to Agent Orange [14].
  • This action of RA required protein and mRNA synthesis but, in contrast to enzyme induction by PMA and/or sarcoma virus transformation, retinoid effects were not significantly inhibited by elevated concentrations of cAMP [15].
  • Cyclophosphamide delays 3-methylcholanthrene sarcoma induction in mice [16].
  • SUVmax and SUVpeak provided the most robust measurements of tumor glucose metabolism in sarcomas [17].

Biological context of Sarcoma

  • Sarcoma MC 11 was originally induced by methylcholanthrene (Meth A ) [22]. C57BL/10Sn mice bearing progressively growing syngeneic sarcomas are immunologically hyporeactive. Their cells synthesize after mitogen stimulation similar amount of mRNA for TNFα and [23] IL-1 [24], but considerably less mRNA for TNFβ [23] and for the inducible 55,000 MW interleukin-2 receptor [25] in comparison with control mice. They also exhibit low response to IL-1 and IL-2 stimulation [26]



Anatomical context of Sarcoma

  • Of the many cell lines examined, Moloney sarcoma virus-transformed cells had the lowest amounts of alpha 2M [27].
  • A 1.8 kb cDNA clone, Krev-1, with revertant-inducing activity on Kirsten sarcoma virus-transformed NIH/3T3 cells, has been isolated from a human fibroblast cDNA expression library [28].
  • Determination of the ratio of gamma plus beta to zeta actin in different cytoskeletal preparations of intact and enucleated sarcoma 180 cells indicated that this actin species is not localized specifically to any of the major actin-containing structures preserved in the cytoskeletons [29].
  • The adoptive transfer of such lymphokine-activated killer (LAK) cells to mice with established pulmonary sarcoma metastases was highly effective in reducing the number (and size) of these tumor nodules when combined with repeated injections of recombinant IL-2 [30].
  • A nonimmunogenic sarcoma transduced with the cDNA for interferon gamma elicits CD8+ T cells against the wild-type tumor: correlation with antigen presentation capability [31].

Gene context of Sarcoma

  • The jun oncoprotein, which causes sarcomas in chickens, and the DNA-binding domain of yeast GCN4, which coordinately regulates the expression of amino acid biosynthetic genes, show significant homology [32].
  • Human MDM2 is amplified in 30-40% of sarcomas, and is overexpressed in leukaemic cells [33].
  • One hundred percent of mice harboring null Nf1 and p53 alleles in cis synergize to develop soft tissue sarcomas between 3 and 7 months of age [34].
  • EWS-FLI1 or EWS-ERG fusions were detected in six of eight Ewing's sarcomas and one of seven undifferentiated sarcomas [35].
  • We showed that the incubation of resting splenocytes from C57BL/6 mice solely in purified native or recombinant mouse IL-4 results in the generation of lymphokine-activated killer (LAK) activity directed against fresh, syngeneic sarcoma cells [36].
  • The intrinsic pathway of apoptosis seems sufficient to mediate p53 tumor suppression in an epithelial cancer, but not in this model of soft tissue sarcoma [37].
  • Measuring HIF1a, HB-EGF, and VEGF-C expression may contribute to a better understanding of the prognosis of patients with soft tissue sarcoma and may even play a crucial role for the distribution of patients to multimodal therapeutic regimens [38].

Analytical, diagnostic and therapeutic context of Sarcoma


  1. The use of neutron beam therapy in the management of locally advanced nonresectable radioresistant tumors. Hendrickson, F.R. CA: a cancer journal for clinicians. (1988) [Pubmed]
  2. Heterozygous disruption of Hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Chen, W.Y., Zeng, X., Carter, M.G., Morrell, C.N., Chiu Yen, R.W., Esteller, M., Watkins, D.N., Herman, J.G., Mankowski, J.L., Baylin, S.B. Nat. Genet. (2003) [Pubmed]
  3. The HL-60 transforming sequence: a ras oncogene coexisting with altered myc genes in hematopoietic tumors. Murray, M.J., Cunningham, J.M., Parada, L.F., Dautry, F., Lebowitz, P., Weinberg, R.A. Cell (1983) [Pubmed]
  4. Transforming proteins of some feline and avian sarcoma viruses are related structurally and functionally. Beemon, K. Cell (1981) [Pubmed]
  5. Interaction between the retinoblastoma protein and the oncoprotein MDM2. Xiao, Z.X., Chen, J., Levine, A.J., Modjtahedi, N., Xing, J., Sellers, W.R., Livingston, D.M. Nature (1995) [Pubmed]
  6. Burn scar neoplasms: a literature review and statistical analysis. Kowal-Vern, A., Criswell, B.K. Burns : journal of the International Society for Burn Injuries. (2005) [Pubmed]
  7. Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. St John, M.A., Tao, W., Fei, X., Fukumoto, R., Carcangiu, M.L., Brownstein, D.G., Parlow, A.F., McGrath, J., Xu, T. Nat. Genet. (1999) [Pubmed]
  8. The EWS-WT1 translocation product induces PDGFA in desmoplastic small round-cell tumour. Lee, S.B., Kolquist, K.A., Nichols, K., Englert, C., Maheswaran, S., Ladanyi, M., Gerald, W.L., Haber, D.A. Nat. Genet. (1997) [Pubmed]
  9. Prevalence and spectrum of germline mutations of the p53 gene among patients with sarcoma. Toguchida, J., Yamaguchi, T., Dayton, S.H., Beauchamp, R.L., Herrera, G.E., Ishizaki, K., Yamamuro, T., Meyers, P.A., Little, J.B., Sasaki, M.S. N. Engl. J. Med. (1992) [Pubmed]
  10. Cancer mortality in workers exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Fingerhut, M.A., Halperin, W.E., Marlow, D.A., Piacitelli, L.A., Honchar, P.A., Sweeney, M.H., Greife, A.L., Dill, P.A., Steenland, K., Suruda, A.J. N. Engl. J. Med. (1991) [Pubmed]
  11. The cyclin B2 component of MPF is a substrate for the c-mos(xe) proto-oncogene product. Roy, L.M., Singh, B., Gautier, J., Arlinghaus, R.B., Nordeen, S.K., Maller, J.L. Cell (1990) [Pubmed]
  12. Plasminogen activator in chick embryo muscle cells: induction of enzyme by RSV, PMA and retinoic acid. Miskin, R., Easton, T.G., Reich, E. Cell (1978) [Pubmed]
  13. Mutagenesis of Fujinami sarcoma virus: evidence that tyrosine phosphorylation of P130gag-fps modulates its biological activity. Weinmaster, G., Zoller, M.J., Smith, M., Hinze, E., Pawson, T. Cell (1984) [Pubmed]
  14. Thoracic soft-tissue sarcoma in Vietnam veterans exposed to Agent Orange. Sarma, P.R., Jacobs, J. N. Engl. J. Med. (1982) [Pubmed]
  15. Plasminogen activator in chick fibroblasts: induction of synthesis by retinoic acid; synergism with viral transformation and phorbol ester. Wilson, E.L., Reich, E. Cell (1978) [Pubmed]
  16. Cyclophosphamide delays 3-methylcholanthrene sarcoma induction in mice. Hellström, I., Hellström, K.E. Nature (1978) [Pubmed]
  17. Treatment monitoring by 18F-FDG PET/CT in patients with sarcomas: interobserver variability of quantitative parameters in treatment-induced changes in histopathologically responding and nonresponding tumors. Benz, M.R., Evilevitch, V., Allen-Auerbach, M.S., Eilber, F.C., Phelps, M.E., Czernin, J., Weber, W.A. J. Nucl. Med. (2008) [Pubmed]
  18. Characterization of protein kinase activity associated with the transforming gene product of Fujinami sarcoma virus. Feldman, R.A., Hanafusa, T., Hanafusa, H. Cell (1980) [Pubmed]
  19. Inducibility of class II major histocompatibility complex antigens by interferon gamma is associated with reduced tumorigenicity in C3H mouse fibroblasts transformed by v-Ki-ras. Bateman, W.J., Fiera, R., Matthews, N., Morris, A.G. J. Exp. Med. (1991) [Pubmed]
  20. Chromosome assignment of the tumor-specific antigen of a 3-methylcholanthrene-induced mouse sarcoma. Pravtcheva, D.D., DeLeo, A.B., Ruddle, F.H., Old, L.J. J. Exp. Med. (1981) [Pubmed]
  21. BALB- and Harvey-murine sarcoma virus transformation of a novel lymphoid progenitor cell. Pierce, J.H., Aaronson, S.A. J. Exp. Med. (1982) [Pubmed]
  22. Solubilized tumour-associated antigens of methyl-cholanthrene-induced mouse sarcomas. Comparative studies by in vitro sensitization of lymph-node cells, macrophage electrophoretic mobility assay and transplantation tests. Bubeník, J., Indrová, M., Nemecková, S., Malkovský, M., Von Broen, B., Pálek, V., Anderlíková, J. Int. J. Cancer. (1978) [Pubmed]
  23. Expression of the gene for tumor necrosis factor-beta but not for tumor necrosis factor-alpha is impaired in tumor-bearing mice. Lipoldová, M., Zajícová, A., Holán, V. Cell. Immunol. (1993) [Pubmed]
  24. Interleukin-1 production by immunologically hyporeactive tumour-bearing mice. Holán, V., Lipoldová, M. Br. J. Cancer. (1990) [Pubmed]
  25. Tumour-bearing animals synthesize a decreased level of mRNA for the inducible 55,000 MW interleukin-2 receptor. Holán, V., Lipoldová, M. Immunology. (1990) [Pubmed]
  26. Low responsiveness of spleen cells from tumour-bearing mice to recombinant interleukin-1 and interleukin-2. Impaired expression of interleukin-2 receptors. Holán, V., Lipoldová, M. Int. J. Cancer. (1990) [Pubmed]
  27. Localization of serum-derived alpha 2 macroglobulin in cultured cells and decrease after Moloney sarcoma virus transformation. Pastan, I., Willingham, M., Anderson, W., Gallo, M. Cell (1977) [Pubmed]
  28. A ras-related gene with transformation suppressor activity. Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., Noda, M. Cell (1989) [Pubmed]
  29. Coexistence of three major isoactins in a single sarcoma 180 cell. Bravo, R., Fey, S.J., Small, J.V., Larsen, P.M., Celis, J.E. Cell (1981) [Pubmed]
  30. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Mulé, J.J., Shu, S., Schwarz, S.L., Rosenberg, S.A. Science (1984) [Pubmed]
  31. A nonimmunogenic sarcoma transduced with the cDNA for interferon gamma elicits CD8+ T cells against the wild-type tumor: correlation with antigen presentation capability. Restifo, N.P., Spiess, P.J., Karp, S.E., Mulé, J.J., Rosenberg, S.A. J. Exp. Med. (1992) [Pubmed]
  32. The DNA-binding domains of the jun oncoprotein and the yeast GCN4 transcriptional activator protein are functionally homologous. Struhl, K. Cell (1987) [Pubmed]
  33. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Jones, S.N., Roe, A.E., Donehower, L.A., Bradley, A. Nature (1995) [Pubmed]
  34. Mouse tumor model for neurofibromatosis type 1. Vogel, K.S., Klesse, L.J., Velasco-Miguel, S., Meyers, K., Rushing, E.J., Parada, L.F. Science (1999) [Pubmed]
  35. Molecular assays for chromosomal translocations in the diagnosis of pediatric soft tissue sarcomas. Barr, F.G., Chatten, J., D'Cruz, C.M., Wilson, A.E., Nauta, L.E., Nycum, L.M., Biegel, J.A., Womer, R.B. JAMA (1995) [Pubmed]
  36. Interleukin 4 (B cell stimulatory factor 1) can mediate the induction of lymphokine-activated killer cell activity directed against fresh tumor cells. Mulé, J.J., Smith, C.A., Rosenberg, S.A. J. Exp. Med. (1987) [Pubmed]
  37. A spatially and temporally restricted mouse model of soft tissue sarcoma. Kirsch, D.G., Dinulescu, D.M., Miller, J.B., Grimm, J., Santiago, P.M., Young, N.P., Nielsen, G.P., Quade, B.J., Chaber, C.J., Schultz, C.P., Takeuchi, O., Bronson, R.T., Crowley, D., Korsmeyer, S.J., Yoon, S.S., Hornicek, F.J., Weissleder, R., Jacks, T. Nat. Med. (2007) [Pubmed]
  38. A three-gene signature for outcome in soft tissue sarcoma. Hoffmann, A.C., Hoffman, A.C., Danenberg, K.D., Taubert, H., Danenberg, P.V., Wuerl, P. Clin. Cancer Res. (2009) [Pubmed]
  39. Localization of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electron microscopic immunocytochemistry. Willingham, M.C., Pastan, I., Shih, T.Y., Scolnick, E.M. Cell (1980) [Pubmed]
  40. Heat shock protein 70-associated peptides elicit specific cancer immunity. Udono, H., Srivastava, P.K. J. Exp. Med. (1993) [Pubmed]
  41. Combination chemotherapy with doxorubicin, dacarbazine, and ifosfamide in advanced adult soft tissue sarcoma. Canadian Sarcoma Group--National Cancer Institute of Canada Clinical Trials Group. Bramwell, V., Quirt, I., Warr, D., Verma, S., Young, V., Knowling, M., Eisenhauer, E. J. Natl. Cancer Inst. (1989) [Pubmed]
  42. Effects of postoperative adjuvant chemotherapy and radiotherapy on ovarian function in women undergoing treatment for soft tissue sarcoma. Shamberger, R.C., Sherins, R.J., Ziegler, J.L., Glatstein, E., Rosenberg, S.A. J. Natl. Cancer Inst. (1981) [Pubmed]
  43. Potential use of imatinib in Ewing's Sarcoma: evidence for in vitro and in vivo activity. Merchant, M.S., Woo, C.W., Mackall, C.L., Thiele, C.J. J. Natl. Cancer Inst. (2002) [Pubmed]
WikiGenes - Universities