The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Peridinin     [(1S,3R)-3-hydroxy-4- [(3E,5E,7E,9E,11Z)-11...

Synonyms: AC1NRCRU, NSC-679586, NSC679586, LMPR01070007, 33281-81-1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Peridinin

 

High impact information on Peridinin

  • Photosynthetic dinoflagellates are important aquatic primary producers and notorious causes of toxic 'red tides'. Typical dinoflagellate chloroplasts differ from all other plastids in having a combination of three envelope membranes and peridinin-chlorophyll a/c light-harvesting pigments [3].
  • The structural basis for efficient excitonic energy transfer from peridinin to chlorophyll is found in the clustering of peridinins around the chlorophylls at van der Waals distances [4].
  • At times of high carbon fixation, Rubisco is found in pyrenoids, regions of the chloroplasts located near the cell center, and is separated from most of the light-harvesting protein PCP (for peridinin-chlorophyll a--protein), which is found in cortical regions of the plastids [5].
  • Phylogenetic analysis of the oxygen-evolving-enhancer (PsbO) proteins confirmed that in K. brevis the original peridinin-type plastid was replaced by that of a haptophyte, an alga which had previously acquired a red algal chloroplast by secondary endosymbiosis [6].
  • Here, we employ femtosecond transient absorption spectroscopy to reveal energy transfer pathways in the peridinin-chlorophyll-a-protein (PCP) complex containing the highly substituted carotenoid peridinin, which includes an intramolecular charge transfer (ICT) state in its excited state manifold [7].
 

Biological context of Peridinin

  • Migration of the plastid genome to the nucleus in a peridinin dinoflagellate [8].
  • Indeed, protein maximum-likelihood analyses of concatenated PsaA and PsbA amino acid sequences indicate that, although 19' hexanoyloxyfucoxanthin-type (19' HNOF-type) plastids in dinoflagellates group with haptophyte plastids, peridinin-type plastids group weakly with those of stramenopiles [9].
  • In the light of these processes, we have evaluated the origin of 2 types of dinoflagellate plastids, containing the peridinin or 19'-hexanoyloxyfucoxanthin (19'-HNOF) pigments, by inferring the phylogeny using "covarion" evolutionary models allowing the pattern of among-site rate variation to change over time [10].
  • Nucleotide sequence of a cDNA clone encoding the precursor of the peridinin-chlorophyll a-binding protein from the dinoflagellate Symbiodinium sp [11].
  • However, a conserved sequence motif was identified by comparing the two intergene spacer regions of lcf and the peridinin chlorophyll protein gene, pcp; a novel 13 nt sequence, CGTGAACGCAGTG, which might be a dinoflagellate promoter, was found to be present in both [12].
 

Anatomical context of Peridinin

 

Associations of Peridinin with other chemical compounds

 

Gene context of Peridinin

  • Biotinylated anti-CR3 mAb and streptavidin-FITC were used in combination with anti-CD3 mAb conjugated with peridinin chlorophyll-alpha protein (PerCP) and phycoerythrin-labeled mAbs to CD4, CD8, CD19, or CD56 [21].
  • Whole blood specimens are labelled with a mixture of antibodies: FITC-conjugated antibodies to CD4 and CD19, PE-conjugated antibodies to CD8 and CD16, and either peridinin chlorophyll protein (PerCP) or allophycocyanin (APC) labelling for antibodies to CD3 [22].
  • All peridinin-containing dinoflagellates investigated so far have at least two types of glyceraldehyde-3-phosphate dehydrogenase (GAPDH): cytosolic and plastid-targeted forms [23].
  • The results demonstrate a special light-harvesting strategy in the PCP complex that uses the ICT state of peridinin to enhance energy transfer efficiency [7].
  • DNA1 + 2 analyses of plastid-encoded psbA genes (encoding of photosystem II D1 proteins) strongly suggest a relationship between haptophyte plastids and typical (peridinin-containing) dinoflagellate plastids [9].
 

Analytical, diagnostic and therapeutic context of Peridinin

  • Complete chloroplast 23S rRNA and psbA genes from five peridinin-containing dinoflagellates (Heterocapsa pygmaea, Heterocapsa niei, Heterocapsa rotun-data, Amphidinium carterae, and Protoceratium reticulatum) were amplified by PCR and sequenced; partial sequences were obtained from Thoracosphaera heimii and Scrippsiella trochoidea [24].
  • Crystallization and preliminary X-ray analysis of a peridinin-chlorophyll a protein from Amphidinium carterae [25].
  • Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution [26].

References

  1. A nuclear-encoded form II RuBisCO in dinoflagellates. Morse, D., Salois, P., Markovic, P., Hastings, J.W. Science (1995) [Pubmed]
  2. Reconstitution of the peridinin-chlorophyll a protein (PCP): evidence for functional flexibility in chlorophyll binding. Miller, D.J., Catmull, J., Puskeiler, R., Tweedale, H., Sharples, F.P., Hiller, R.G. Photosyn. Res. (2005) [Pubmed]
  3. Single gene circles in dinoflagellate chloroplast genomes. Zhang, Z., Green, B.R., Cavalier-Smith, T. Nature (1999) [Pubmed]
  4. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Hofmann, E., Wrench, P.M., Sharples, F.P., Hiller, R.G., Welte, W., Diederichs, K. Science (1996) [Pubmed]
  5. Circadian changes in ribulose-1,5-bisphosphate carboxylase/oxygenase distribution inside individual chloroplasts can account for the rhythm in dinoflagellate carbon fixation. Nassoury, N., Fritz, L., Morse, D. Plant Cell (2001) [Pubmed]
  6. Second- and third-hand chloroplasts in dinoflagellates: phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Ishida, K., Green, B.R. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  7. Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state. Zigmantas, D., Hiller, R.G., Sundstrom, V., Polivka, T. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  8. Migration of the plastid genome to the nucleus in a peridinin dinoflagellate. Hackett, J.D., Yoon, H.S., Soares, M.B., Bonaldo, M.F., Casavant, T.L., Scheetz, T.E., Nosenko, T., Bhattacharya, D. Curr. Biol. (2004) [Pubmed]
  9. Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. Inagaki, Y., Simpson, A., Dacks, J., Roger, A. Syst. Biol. (2004) [Pubmed]
  10. Heterotachy processes in rhodophyte-derived secondhand plastid genes: Implications for addressing the origin and evolution of dinoflagellate plastids. Shalchian-Tabrizi, K., Skånseng, M., Ronquist, F., Klaveness, D., Bachvaroff, T.R., Delwiche, C.F., Botnen, A., Tengs, T., Jakobsen, K.S. Mol. Biol. Evol. (2006) [Pubmed]
  11. Nucleotide sequence of a cDNA clone encoding the precursor of the peridinin-chlorophyll a-binding protein from the dinoflagellate Symbiodinium sp. Norris, B.J., Miller, D.J. Plant Mol. Biol. (1994) [Pubmed]
  12. The structure and organization of the luciferase gene in the photosynthetic dinoflagellate Gonyaulax polyedra. Li, L., Hastings, J.W. Plant Mol. Biol. (1998) [Pubmed]
  13. Stereochemistry of allene biosynthesis and the formation of the acetylenic carotenoid diadinoxanthin and peridinin (C37) from neoxanthin. Swift, I.E., Milborrow, B.V. Biochem. J. (1981) [Pubmed]
  14. Characterization of T-cell subsets and T-cell receptor subgroups in pigtailed macaques using two- and three-color flow cytometry. Axberg, I., Gale, M.J., Afar, B., Clark, E.A. J. Clin. Immunol. (1991) [Pubmed]
  15. Detection of lymphocyte subsets using three-color/single-laser flow cytometry and the fluorescent dye peridinin chlorophyll-alpha protein. Afar, B., Merrill, J., Clark, E.A. J. Clin. Immunol. (1991) [Pubmed]
  16. Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. Bachvaroff, T.R., Concepcion, G.T., Rogers, C.R., Herman, E.M., Delwiche, C.F. Protist (2004) [Pubmed]
  17. Morphology and Phylogeny of the Pseudocolonial Dinoflagellates Polykrikos lebourae and Polykrikos herdmanae n. sp. Hoppenrath, M., Leander, B.S. Protist (2007) [Pubmed]
  18. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Yoon, H.S., Hackett, J.D., Bhattacharya, D. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  19. Astaxanthin and peridinin inhibit oxidative damage in Fe(2+)-loaded liposomes: scavenging oxyradicals or changing membrane permeability? Barros, M.P., Pinto, E., Colepicolo, P., Pedersén, M. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  20. Molecular evidence for plastid robbery (Kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoning. Takishita, K., Koike, K., Maruyama, T., Ogata, T. Protist (2002) [Pubmed]
  21. CR3 (CD11b/CD18) expressed by cytotoxic T cells and natural killer cells is upregulated in a manner similar to neutrophil CR3 following stimulation with various activating agents. Muto, S., Vĕtvicka, V., Ross, G.D. J. Clin. Immunol. (1993) [Pubmed]
  22. Lymphocyte subset analysis by Boolean algebra: a phenotypic approach using a cocktail of 5 antibodies and 3 color immunofluorescence. Hunter, S.D., Peters, L.E., Wotherspoon, J.S., Crowe, S.M. Cytometry. (1994) [Pubmed]
  23. Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates. Takishita, K., Ishida, K., Maruyama, T. Protist (2004) [Pubmed]
  24. Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. Zhang, Z., Green, B.R., Cavalier-Smith, T. J. Mol. Evol. (2000) [Pubmed]
  25. Crystallization and preliminary X-ray analysis of a peridinin-chlorophyll a protein from Amphidinium carterae. Steck, K., Wacker, T., Welte, W., Sharples, F.P., Hiller, R.G. FEBS Lett. (1990) [Pubmed]
  26. Use of ultrafast dispersed pump-dump-probe and pump-repump-probe spectroscopies to explore the light-induced dynamics of peridinin in solution. Papagiannakis, E., Vengris, M., Larsen, D.S., van Stokkum, I.H., Hiller, R.G., van Grondelle, R. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical. (2006) [Pubmed]
 
WikiGenes - Universities