The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Dinoflagellida

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Dinoflagellida

 

High impact information on Dinoflagellida

  • Photosynthetic dinoflagellates are important aquatic primary producers and notorious causes of toxic 'red tides'. Typical dinoflagellate chloroplasts differ from all other plastids in having a combination of three envelope membranes and peridinin-chlorophyll a/c light-harvesting pigments [6].
  • Peridinin-chlorophyll-protein, a water-soluble light-harvesting complex that has a blue-green absorbing carotenoid as its main pigment, is present in most photosynthetic dinoflagellates [7].
  • When given in a noninducing photoperiod, melatonin and an analog, 5-methoxytryptamine, substances that had previously been shown to occur in Gonyaulax, provoked cyst formation [8].
  • Autoimmune sera of the Sm specificity react with the major class of small nuclear RNA (snRNA)-containing ribonucleoprotein particles (snRNP's) from organisms as evolutionarily divergent as insects and dinoflagellates but have been reported not to recognize snRNP's from yeast [9].
  • As expected from previous analyses, the fucoxanthin-containing dinoflagellates formed a well-supported sister group with haptophytes in the rbcL tree [10].
 

Chemical compound and disease context of Dinoflagellida

 

Biological context of Dinoflagellida

 

Anatomical context of Dinoflagellida

 

Associations of Dinoflagellida with chemical compounds

  • The circadian-expressed luciferin-binding protein from the dinoflagellate Gonyaulax polyedra is regulated at the translational level [21].
  • Letter: Dinosterol, the major sterol with a unique side chain ion the toxic dinoflagellate, Gonyaulax tamarensis [22].
  • Acid phosphatase localization in PAS-bodies of Gonyaulax [23].
  • To decipher the complex signaling events which lead to encystment, we have investigated the functional roles of Ca2+ and inositol phosphates in indoleamine-induced encystment of the dinoflagellates Alexandrium catenella and Crypthecodinium cohnii [24].
  • "Species" radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition [25].
 

Gene context of Dinoflagellida

  • A transcriptional fusion of genes encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase in dinoflagellates [26].
  • U3 snoRNA has been previously characterized from several sources, including human, rat, mouse, frog, fruit fly, dinoflagellates, slime mold, and yeast; in all these organisms, U3 snoRNA contains trimethylguanosine cap structure [27].
  • The present study thus demonstrated the presence of the spindle checkpoint and APC-mediated cyclin degradation in dinoflagellates [28].
  • COX1 amino acid identity and phylogenetic tree analyses strongly support a close evolutionary relationship between dinoflagellates and apicomplexans; however, inclusion of the ciliates in this clade is less well supported, a result likely due to the highly derived nature of ciliate COX1 sequences [29].
  • An AT-rich cDNA isolated from a Gonyaulax library was identified as a putative mitochondrial cytochrome oxidase subunit 3 (cox3) by sequence comparisons [30].
 

Analytical, diagnostic and therapeutic context of Dinoflagellida

  • Molecular cloning and genomic organization of a gene for luciferin-binding protein from the dinoflagellate Gonyaulax polyedra [31].
  • The neurotoxic actions of T17 , a toxin isolated from the red-tide dinoflagellate Ptychodiscus brevis, on membrane excitability were investigated by the intracellular microelectrode technique on the crayfish giant axons and by the voltage clamp experiments on the squid giant axons [32].
  • Monitoring brevetoxins during a Gymnodinium breve red tide: comparison of sodium channel specific cytotoxicity assay and mouse bioassay for determination of neurotoxic shellfish toxins in shellfish extracts [33].
  • Both athecate cells and motile forms of gonyaulacoid dinoflagellates derived from size-fractionated plankton material from Nova Scotia, Canada were sorted and pooled by the glass micropipette isolation technique and by flow cytometry [34].
  • A protein present in extracts of the dinoflagellate Gonyaulax that was capable of binding an antibody directed against the conserved Cdc2 kinase epitope EGVPSTAIREISLLKE was characterized by Western blot analysis and DNA sequencing and shown not to encode a Cdc2 kinase [35].

References

  1. Synthesis of small nuclear ribonucleoprotein particles by the malarial parasite Plasmodium falciparum. Francoeur, A.M., Gritzmacher, C.A., Peebles, C.L., Reese, R.T., Tan, E.M. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  2. Energy transfer in the peridinin chlorophyll-a protein of Amphidinium carterae studied by polarized transient absorption and target analysis. Krueger, B.P., Lampoura, S.S., van Stokkum, I.H., Papagiannakis, E., Salverda, J.M., Gradinaru, C.C., Rutkauskas, D., Hiller, R.G., van Grondelle, R. Biophys. J. (2001) [Pubmed]
  3. Evidence that some dinoflagellates contain a ribulose-1,5-bisphosphate carboxylase/oxygenase related to that of the alpha-proteobacteria. Whitney, S.M., Shaw, D.C., Yellowlees, D. Proc. Biol. Sci. (1995) [Pubmed]
  4. Foodborne toxins of marine origin: ciguatera. Juranovic, L.R., Park, D.L. Reviews of environmental contamination and toxicology. (1991) [Pubmed]
  5. Inhibitory effect of a marine microalgal polysaccharide on the telomerase activity in K562 cells. Sogawa, K., Sumida, T., Hamakawa, H., Yamada, T., Matsumoto, K., Matsuda, M., Oda, H., Miyake, H., Tashiro, S., Okutani, K. Res. Commun. Mol. Pathol. Pharmacol. (1998) [Pubmed]
  6. Single gene circles in dinoflagellate chloroplast genomes. Zhang, Z., Green, B.R., Cavalier-Smith, T. Nature (1999) [Pubmed]
  7. Structural basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from Amphidinium carterae. Hofmann, E., Wrench, P.M., Sharples, F.P., Hiller, R.G., Welte, W., Diederichs, K. Science (1996) [Pubmed]
  8. Photoperiodism and effects of indoleamines in a unicellular alga, Gonyaulax polyedra. Balzer, I., Hardeland, R. Science (1991) [Pubmed]
  9. A subset of yeast snRNA's contains functional binding sites for the highly conserved Sm antigen. Riedel, N., Wolin, S., Guthrie, C. Science (1987) [Pubmed]
  10. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Yoon, H.S., Hackett, J.D., Bhattacharya, D. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  11. Shellfish and fish poisoning related to the toxic dinoflagellates. Sakamoto, Y., Lockey, R.F., Krzanowski, J.J. South. Med. J. (1987) [Pubmed]
  12. Acute and chronic effects of toxic metals on viability, encystment and bioluminescence in the dinoflagellate Gonyaulax polyedra. Okamoto, O.K., Shao, L., Hastings, J.W., Colepicolo, P. Comp. Biochem. Physiol. C, Pharmacol. Toxicol. Endocrinol. (1999) [Pubmed]
  13. Evidence for an inorganic carbon-concentrating mechanism in the symbiotic dinoflagellate Symbiodinium sp. Leggat, W., Badger, M.R., Yellowlees, D. Plant Physiol. (1999) [Pubmed]
  14. The phylogeny of glyceraldehyde-3-phosphate dehydrogenase indicates lateral gene transfer from cryptomonads to dinoflagellates. Fagan, T., Woodland Hastings, J., Morse, D. J. Mol. Evol. (1998) [Pubmed]
  15. Molecular topology of the photosynthetic light-harvesting pigment complex, peridinin-chlorophyll a-protein, from marine dinoflagellates. Song, P.S., Koka, P., Prézelin, B.B., Haxo, F.T. Biochemistry (1976) [Pubmed]
  16. Rate variation as a function of gene origin in plastid-derived genes of peridinin-containing dinoflagellates. Bachvaroff, T.R., Sanchez-Puerta, M.V., Delwiche, C.F. J. Mol. Evol. (2006) [Pubmed]
  17. Dinoflagellate bioluminescence: a comparative study of invitro components. Schmitter, R.E., Njus, D., Sulzman, F.M., Gooch, V.D., Hastings, J.W. J. Cell. Physiol. (1976) [Pubmed]
  18. Identification of an HSP70-related protein associated with the centrosome from dinoflagellates to human cells. Perret, E., Moudjou, M., Geraud, M.L., Derancourt, J., Soyer-Gobillard, M.O., Bornens, M. J. Cell. Sci. (1995) [Pubmed]
  19. Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. Bachvaroff, T.R., Concepcion, G.T., Rogers, C.R., Herman, E.M., Delwiche, C.F. Protist (2004) [Pubmed]
  20. Influence of calcium on the effects of okadaic acid and its interaction with caffeine and theophylline in rat myometrium. Candenas, M.L., Arteche, E., Norte, M., Advenier, C., Martín, J.D. Naunyn Schmiedebergs Arch. Pharmacol. (1994) [Pubmed]
  21. Circadian expression of the luciferin-binding protein correlates with the binding of a protein to the 3' untranslated region of its mRNA. Mittag, M., Lee, D.H., Hastings, J.W. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  22. Letter: Dinosterol, the major sterol with a unique side chain ion the toxic dinoflagellate, Gonyaulax tamarensis. Shimizu, Y., Alam, M., Kobayashi, A. J. Am. Chem. Soc. (1976) [Pubmed]
  23. Acid phosphatase localization in PAS-bodies of Gonyaulax. Schmitter, R.E., Jurkiewicz, A.J. J. Cell. Sci. (1981) [Pubmed]
  24. Calcium ion dependency and the role of inositol phosphates in melatonin-induced encystment of dinoflagellates. Tsim, S.T., Wong, J.T., Wong, Y.H. J. Cell. Sci. (1997) [Pubmed]
  25. "Species" radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Lajeunesse, T.C. Mol. Biol. Evol. (2005) [Pubmed]
  26. A transcriptional fusion of genes encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase in dinoflagellates. Takishita, K., Patron, N.J., Ishida, K., Maruyama, T., Keeling, P.J. J. Eukaryot. Microbiol. (2005) [Pubmed]
  27. Cap structure of U3 small nucleolar RNA in animal and plant cells is different. gamma-Monomethyl phosphate cap structure in plant RNA. Shimba, S., Buckley, B., Reddy, R., Kiss, T., Filipowicz, W. J. Biol. Chem. (1992) [Pubmed]
  28. The spindle checkpoint in the dinoflagellate Crypthecodinium cohnii. Yeung, P.K., New, D.C., Leveson, A., Yam, C.H., Poon, R.Y., Wong, J.T. Exp. Cell Res. (2000) [Pubmed]
  29. The cytochrome oxidase subunit 1 gene (cox1) from the dinoflagellate, Crypthecodinium cohnii. Norman, J.E., Gray, M.W. FEBS Lett. (1997) [Pubmed]
  30. Polyadenylated transcripts containing random gene fragments are expressed in dinoflagellate mitochondria. Chaput, H., Wang, Y., Morse, D. Protist (2002) [Pubmed]
  31. Molecular cloning and genomic organization of a gene for luciferin-binding protein from the dinoflagellate Gonyaulax polyedra. Lee, D.H., Mittag, M., Sczekan, S., Morse, D., Hastings, J.W. J. Biol. Chem. (1993) [Pubmed]
  32. Depolarizing action of a red-tide dinoflagellate brevetoxin on axonal membranes. Huang, J.M., Wu, C.H., Baden, D.G. J. Pharmacol. Exp. Ther. (1984) [Pubmed]
  33. Monitoring brevetoxins during a Gymnodinium breve red tide: comparison of sodium channel specific cytotoxicity assay and mouse bioassay for determination of neurotoxic shellfish toxins in shellfish extracts. Dickey, R., Jester, E., Granade, R., Mowdy, D., Moncreiff, C., Rebarchik, D., Robl, M., Musser, S., Poli, M. Nat. Toxins (1999) [Pubmed]
  34. Spirolide composition of micro-extracted pooled cells isolated from natural plankton assemblages and from cultures of the dinoflagellate Alexandrium ostenfeldii. Cembella, A.D., Lewis, N.I., Quilliam, M.A. Nat. Toxins (1999) [Pubmed]
  35. Do dinoflagellates contain a Cdc2-like protein kinase? Salois, P., Morse, D. Mol. Marine Biol. Biotechnol. (1996) [Pubmed]
 
WikiGenes - Universities