The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Diarachidonin     [3-hydroxy-2- [(5E,8E,11E,14E)-icosa- 5,8,11...

Synonyms: AC1O5OKF, 82231-61-6, Diradylglycerol, Diarachidonylglycerol, 1,2-sn-Diradylglycerol, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Diradylglycerol

  • We hypothesized that fatty liver might be associated with the accumulation of 1,2-sn-diradylglycerol and subsequent activation of protein kinase C. Several lines of evidence indicate that cancers might develop secondary to abnormalities in protein kinase C-mediated signal transduction [1].
  • 1,2(2,3)-Diradylglycero O-(p-nitrophenyl) n-hexylphosphonates were synthesized, with the diradylglycerol moiety being di-O-octylglycerol, 1-O-hexadecyl-2-O-pyrenedecanylglycerol, or 1-O-octyl-2-oleoyl-glycerol, and tested for their ability to inactivate lipases from Chromobacterium viscosum (CVL) and Rhizopus oryzae (ROL) [2].

High impact information on Diradylglycerol


Biological context of Diradylglycerol


Anatomical context of Diradylglycerol


Associations of Diradylglycerol with other chemical compounds


Gene context of Diradylglycerol


Analytical, diagnostic and therapeutic context of Diradylglycerol


  1. Accumulation of 1,2-sn-diradylglycerol with increased membrane-associated protein kinase C may be the mechanism for spontaneous hepatocarcinogenesis in choline-deficient rats. da Costa, K.A., Cochary, E.F., Blusztajn, J.K., Garner, S.C., Zeisel, S.H. J. Biol. Chem. (1993) [Pubmed]
  2. Inhibition of microbial lipases with stereoisomeric triradylglycerol analog phosphonates. Stadler, P., Zandonella, G., Haalck, L., Spener, F., Hermetter, A., Paltauf, F. Biochim. Biophys. Acta (1996) [Pubmed]
  3. Phospholipase D activation in human natural killer cells through the Kp43 and CD16 surface antigens takes place by different mechanisms. Involvement of the phospholipase D pathway in tumor necrosis factor alpha synthesis. Balboa, M.A., Balsinde, J., Aramburu, J., Mollinedo, F., López-Botet, M. J. Exp. Med. (1992) [Pubmed]
  4. Involvement of a phospholipase D in the mechanism of action of granulocyte-macrophage colony-stimulating factor (GM-CSF): priming of human neutrophils in vitro with GM-CSF is associated with accumulation of phosphatidic acid and diradylglycerol. Bourgoin, S., Plante, E., Gaudry, M., Naccache, P.H., Borgeat, P., Poubelle, P.E. J. Exp. Med. (1990) [Pubmed]
  5. Protection from endotoxic shock in mice by pharmacologic inhibition of phosphatidic acid. Rice, G.C., Brown, P.A., Nelson, R.J., Bianco, J.A., Singer, J.W., Bursten, S. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  6. Cloning, genomic organization, and characterization of a human cholinephosphotransferase. Henneberry, A.L., Wistow, G., McMaster, C.R. J. Biol. Chem. (2000) [Pubmed]
  7. Interleukin-2 causes an increase in saturated/monounsaturated phosphatidic acid derived from 1,2-diacylglycerol and 1-O-alkyl-2-acylglycerol. Jones, D.R., Pettitt, T.R., Sanjuán, M.A., Mérida, I., Wakelam, M.J. J. Biol. Chem. (1999) [Pubmed]
  8. Cyclic AMP-elevating agents block chemoattractant activation of diradylglycerol generation by inhibiting phospholipase D activation. Tyagi, S.R., Olson, S.C., Burnham, D.N., Lambeth, J.D. J. Biol. Chem. (1991) [Pubmed]
  9. Diradylglycerol synergizes with an anionic amphiphile to activate superoxide generation and phosphorylation of p47phox in a cell-free system from human neutrophils. Burnham, D.N., Uhlinger, D.J., Lambeth, J.D. J. Biol. Chem. (1990) [Pubmed]
  10. Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. Inhibition by phosphatidic acid phosphohydrolase inhibitors. Perry, D.K., Hand, W.L., Edmondson, D.E., Lambeth, J.D. J. Immunol. (1992) [Pubmed]
  11. Formation of second messenger diradylglycerol in murine peritoneal macrophages is altered after in vivo (n-3) polyunsaturated fatty acid supplementation. Marignani, P.A., Sebaldt, R.J. J. Nutr. (1995) [Pubmed]
  12. Fluoride activates diradylglycerol and superoxide generation in human neutrophils via PLD/PA phosphohydrolase-dependent and -independent pathways. Olson, S.C., Tyagi, S.R., Lambeth, J.D. FEBS Lett. (1990) [Pubmed]
  13. Dynamics of the diradylglycerol responses of stimulated phagocytes. Dougherty, R.W., Dubay, G.R., Niedel, J.E. J. Biol. Chem. (1989) [Pubmed]
  14. Increased saturated triacylglycerol levels in plasma membranes of human neutrophils stimulated by lipopolysaccharide. May, G.L., Wright, L.C., Obbink, K.G., Byleveld, P.M., Garg, M.L., Ahmad, Z.I., Sorrell, T.C. J. Lipid Res. (1997) [Pubmed]
  15. Effect of diarachidonin on prostaglandin E2 synthesis in rabbit kidney medulla slices. Fujimoto, Y., Uno, H., Kagen, C., Ueno, T., Fujita, T. Biochem. J. (1985) [Pubmed]
  16. Utilization of phosphatidylcholine and production of diradylglycerol as a consequence of sphingomyelin synthesis. Sillence, D.J., Allan, D. Biochem. J. (1998) [Pubmed]
  17. In resting conditions, the pancreatic granule membrane protein GP-2 is secreted by cleavage of its glycosylphosphatidylinositol anchor. Paul, E., Leblond, F.A., LeBel, D. Biochem. J. (1991) [Pubmed]
  18. Ceramide regulates oxidant release in adherent human neutrophils. Nakamura, T., Abe, A., Balazovich, K.J., Wu, D., Suchard, S.J., Boxer, L.A., Shayman, J.A. J. Biol. Chem. (1994) [Pubmed]
  19. Phorbol diesters and dioctanoylglycerol stimulate accumulation of both diacylglycerols and alkylacylglycerols in human neutrophils. Rider, L.G., Dougherty, R.W., Niedel, J.E. J. Immunol. (1988) [Pubmed]
  20. Analysis of glycerophosphocholine molecular species as derivatives of 7-[(chlorocarbonyl)-methoxy]-4-methylcoumarin. Wheelan, P., Zirrolli, J.A., Clay, K.L. J. Lipid Res. (1992) [Pubmed]
  21. PC and PE synthesis: mixed micellar analysis of the cholinephosphotransferase and ethanolaminephosphotransferase activities of human choline/ethanolamine phosphotransferase 1 (CEPT1). Wright, M.M., McMaster, C.R. Lipids (2002) [Pubmed]
  22. Biochemistry and cell biology of phospholipase D in human neutrophils. Olson, S.C., Lambeth, J.D. Chem. Phys. Lipids (1996) [Pubmed]
  23. Phospholipase D-mediated diradylglycerol formation coincides with H2O2 and lactoferrin release in adherent human neutrophils. Suchard, S.J., Nakamura, T., Abe, A., Shayman, J.A., Boxer, L.A. J. Biol. Chem. (1994) [Pubmed]
  24. Molecular species analysis of the glycosylphosphatidylinositol anchor of Torpedo marmorata acetylcholinesterase. Bütikofer, P., Kuypers, F.A., Shackleton, C., Brodbeck, U., Stieger, S. J. Biol. Chem. (1990) [Pubmed]
  25. On the biological occurrence and regulation of 1-acyl and 1-O-alkyl-diradylglycerols in human neutrophils. Selective destruction of diacyl species using Rhizopus lipase. Tyagi, S.R., Burnham, D.N., Lambeth, J.D. J. Biol. Chem. (1989) [Pubmed]
  26. Low nanogram range quantitation of diglycerides and ceramide by high-performance liquid chromatography. Previati, M., Bertolaso, L., Tramarin, M., Bertagnolo, V., Capitani, S. Anal. Biochem. (1996) [Pubmed]
WikiGenes - Universities