The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

GTP-Gamma-32P     [[[(2R,3S,4R,5R)-5-(2-amino- 6-oxo-3H-purin...

Synonyms: AC1LD8UR, [gamma-32P]GTP, 37156-72-2, Guanosine triphosphate-gamma-32P (7CI)
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of GTP-Gamma-32P

 

High impact information on GTP-Gamma-32P

  • Constitutively activated RhoA, loaded with [gamma-32P]GTP, directly interacted with GST-IL-1Rcd in a filter-binding assay [5].
  • By preloading recombinant Ran/TC4 with [gamma-32P]GTP or [3H]GDP, we show that the interactions with p97 and NTF2 are specific for the GTP- and GDP-bound forms, respectively [6].
  • Lysate from quiescent platelets promotes rapid hydrolysis of [gamma-32P]GTP bound to rap1B [7].
  • The S6 kinase in crude extracts utilized both [gamma-32P]ATP (apparent Km congruent to 6-8 microM) and [gamma-32P]GTP (apparent Km congruent to 3 microM), but the ability to utilize GTP was lost after partial purification of the kinase [8].
  • In vitro, the valine form of p21 had 2.4- and 2.7-fold greater autophosphorylating activity than the glycine and arginine forms of p21, respectively, using [gamma-32P]GTP as phosphate donor, but the three p21 species had similar Km values for GTP (0.20-0.27 microM) [9].
 

Biological context of GTP-Gamma-32P

  • Phosphorylation of native succinic thiokinase with [gamma-32P]ATP and [gamma-32P]GTP showed radioactivity only in the alpha monomer [10].
  • Using additional information from the kinetics of 32Pi production and release from EF-Tu X Mn X [gamma-32P]GTP these were identified as EF-Tu X Mn X GTP (linewidth 4.2 mT), EF-Tu X Mn X GDP X Pi (1.20 mT) and EF-Tu X Mn X GDP (1.29 mT) [11].
  • In addition, hybridization of RNA transcripts labelled at their 5' end by either [gamma32P]ATP or [gamma-32P]GTP indicated that not only elongation but also initiation occurred randomly through the entire adenovirus-2 genome, irrespective of the form of the enzyme and of the origin of the cells (normal or infected) [12].
 

Anatomical context of GTP-Gamma-32P

 

Associations of GTP-Gamma-32P with other chemical compounds

  • In purified sarcolemmal membranes, carbachol and a variety of other muscarinic receptor (MR) agonists induced increases in [3H]GTP, [gamma-32P]GTP, and [3H]GDP binding to relatively high affinity sites [18].
  • The rate of the fluorescence decay matches the rate of [32P]Pi production due to [gamma-32P]GTP hydrolysis, and the decay is immediately reversed by rechallenging with GTP [19].
  • The endogenous kinase was identified as casein kinase II (CK II) based on the inhibition of the endogenous phosphorylation 160/150-kDa proteins by heparin, 5.6-dichlorobenzimidazole riboside, polyaspartyl peptide and hemin, and its ability to use [gamma-32P]GTP as the phosphate donor [20].
  • The enzyme incubated with [gamma 32P]ATP or [gamma 32P]GTP as phosphoryl donors undergoes autophosphorylation in the M(r) = 25,000 subunit [21].
 

Gene context of GTP-Gamma-32P

  • To identify target proteins involved in these signaling pathways cell extracts immobilized on nitrocellulose have been probed with [gamma-32P]GTP-labeled Rac1, RhoA, and Cdc42Hs [22].
  • For this purpose, cytosolic extracts were incubated with recombinant human p21ras complexed to [gamma-32P]GTP and the time-dependent decrease in p21ras bound radioactivity was measured [23].
  • The phosphorylation system of the membrane was able to utilize [gamma-32P]GTP in both the basal and EGF-stimulated reactions [24].
  • The rate of release of Pi from [gamma-32P]GTP-bound ram p25 was calculated to be 0.011 min-1 [25].
  • However, under conditions that promoted GTP-dependent desensitization, there was no apparent phosphorylation of LH/CG receptor (obtained via immunoprecipitation) by endogenous membrane-associated protein kinases using [gamma-32P]GTP or [gamma-32P]ATP as phosphate donor [26].
 

Analytical, diagnostic and therapeutic context of GTP-Gamma-32P

References

  1. Interleukin-1 signal transduction. Increased GTP binding and hydrolysis in membranes of a murine thymoma line (EL4). O'Neill, L.A., Bird, T.A., Gearing, A.J., Saklatvala, J. J. Biol. Chem. (1990) [Pubmed]
  2. Specific in vitro guanylylation of a 43-kilodalton membrane-associated protein of Streptomyces coelicolor. Obaya, A.J., Guijarro, J. J. Bacteriol. (1993) [Pubmed]
  3. GTP, a nonsubstrate of ATP citrate lyase, is a phosphodonor for the enzyme histidine autophosphorylation. Tuhácková, Z., Krivánek, J. Biochem. Biophys. Res. Commun. (1996) [Pubmed]
  4. Endogenous hyperphosphorylation in plasma membrane from an ascites hepatocarcinoma cell line. Church, J.G., Ghosh, S., Roufogalis, B.D., Villalobo, A. Biochem. Cell Biol. (1988) [Pubmed]
  5. The IL-1 receptor and Rho directly associate to drive cell activation in inflammation. Singh, R., Wang, B., Shirvaikar, A., Khan, S., Kamat, S., Schelling, J.R., Konieczkowski, M., Sedor, J.R. J. Clin. Invest. (1999) [Pubmed]
  6. Nucleotide-specific interaction of Ran/TC4 with nuclear transport factors NTF2 and p97. Paschal, B.M., Delphin, C., Gerace, L. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  7. Epinephrine suppresses rap1B.GAP-activated GTPase activity in human platelets. Marti, K.B., Lapetina, E.G. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  8. Fibroblast growth factor treatment of Swiss 3T3 cells activates a subunit S6 kinase that phosphorylates a synthetic peptide substrate. Pelech, S.L., Olwin, B.B., Krebs, E.G. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  9. Autophosphorylation of v-Ha-ras p21 is modulated by amino acid residue 12. Gibbs, J.B., Ellis, R.W., Scolnick, E.M. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  10. Cross-linking of Escherichia coli succinic thiokinase. I. Reaction with diiminoesters and dimaleimides. Teherani, J.A., Nishimura, J.S. J. Biol. Chem. (1975) [Pubmed]
  11. Electron-paramagnetic-resonance studies of manganese(II) complexes with elongation factor Tu from Bacillus stearothermophilus. Observation of a GTP hydrolysis intermediate state complex. Kalbitzer, H.R., Goody, R.S., Wittinghofer, A. Eur. J. Biochem. (1984) [Pubmed]
  12. Transcription in vitro of adenovirus-2 DNA by RNA polymerases class C purified from uninfected and adenovirus-infected HeLa cells. Hossenlopp, P., Sümegi, J., Chambon, P. Eur. J. Biochem. (1978) [Pubmed]
  13. Guanine nucleotide-specific phosphate transfer by guanine nucleotide-binding regulatory protein beta-subunits. Characterization of the phosphorylated amino acid. Wieland, T., Nürnberg, B., Ulibarri, I., Kaldenberg-Stasch, S., Schultz, G., Jakobs, K.H. J. Biol. Chem. (1993) [Pubmed]
  14. 5-hydroxyicosatetraenoate stimulates neutrophils by a stereospecific, G protein-linked mechanism. O'Flaherty, J.T., Rossi, A.G. J. Biol. Chem. (1993) [Pubmed]
  15. Characterization of GTP-dependent Met-tRNAf binding protein. Barrieux, A., Rosenfeld, M.G. J. Biol. Chem. (1977) [Pubmed]
  16. A 68-kDa kinase and NADPH oxidase component p67phox are targets for Cdc42Hs and Rac1 in neutrophils. Prigmore, E., Ahmed, S., Best, A., Kozma, R., Manser, E., Segal, A.W., Lim, L. J. Biol. Chem. (1995) [Pubmed]
  17. Organelle-specific phosphorylation. Identification of unique membrane phosphoproteins of the endoplasmic reticulum and endosomal apparatus. Rindress, D., Lei, X., Ahluwalia, J.P., Cameron, P.H., Fazel, A., Posner, B.I., Bergeron, J.J. J. Biol. Chem. (1993) [Pubmed]
  18. Regulation of GDP and GTP binding in cardiac sarcolemma by muscarinic receptor agonists. Quist, E. Mol. Pharmacol. (1992) [Pubmed]
  19. Rhodopsin-stimulated activation-deactivation cycle of transducin: kinetics of the intrinsic fluorescence response of the alpha subunit. Guy, P.M., Koland, J.G., Cerione, R.A. Biochemistry (1990) [Pubmed]
  20. The identification of the phosphorylated 150/160-kDa proteins of sarcoplasmic reticulum, their kinase and their association with the ryanodine receptor. Shoshan-Barmatz, V., Orr, I., Weil, S., Meyer, H., Varsanyi, M., Heilmeyer, L.M. Biochim. Biophys. Acta (1996) [Pubmed]
  21. Protein kinase NII from calf thymus chromatin. Isolation, characterization and some functional properties. Angiolillo, A., Panara, F., Desgro, A., Petrelli, C., Gianfranceschi, G.L. Int. J. Biochem. (1992) [Pubmed]
  22. The Ras-related GTPase Rac1 binds tubulin. Best, A., Ahmed, S., Kozma, R., Lim, L. J. Biol. Chem. (1996) [Pubmed]
  23. Differences in GTPase-activating protein activity between liver tumors and normal liver tissue in mice. Müller, O., Frech, M., Gideon, P., Wittinghofer, A., Schwarz, M. Oncogene (1992) [Pubmed]
  24. Rapid enhancement of protein phosphorylation in A-431 cell membrane preparations by epidermal growth factor. Carpenter, G., King, L., Cohen, S. J. Biol. Chem. (1979) [Pubmed]
  25. Characterization and site-directed mutagenesis of a low M(r) GTP-binding protein, ram p25, expressed in Escherichia coli. Nagata, K., Suzuki, T., Shibagaki, Y., Mizumoto, K., Okano, Y., Kaziro, Y., Nozawa, Y. J. Biol. Chem. (1992) [Pubmed]
  26. Phosphorylation-independent desensitization of the luteinizing hormone/chorionic gonadotropin receptor in porcine follicular membranes. Lamm, M.L., Hunzicker-Dunn, M. Mol. Endocrinol. (1994) [Pubmed]
  27. Purification and characterization of polyamine-stimulated protein kinase (casein kinase II) from bovine spermatozoa. Chaudhry, P.S., Nanez, R., Casillas, E.R. Arch. Biochem. Biophys. (1991) [Pubmed]
  28. A radioenzymatic assay for plasma adenosine. German, D.C., Kredich, N.M. Anal. Biochem. (1984) [Pubmed]
 
WikiGenes - Universities