The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Bromoacetylcholine     2-acetyloxyethyl-trimethyl- azanium bromide

Synonyms: Pragmoline, Tonocholin B, NSC-4678, ACMC-1BC2Y, AG-G-49641, ...
This record was replaced with 187.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Bromoacetylcholine

  • Since the neuroblastoma-inoculated A/J mice are considered to be comparable to human neuroblastoma, the cytolytic action of bromoacetylcholine and bromoacetate on murine neuroblastoma warrants further studies on patients [1].
  • Among all cholinergic blockers tested, only the irreversible cholinergic blockers such as bromoacetylcholine (BrACh), iodoacetylcholine and alphabungarotoxin were effective to inhibit glioma cells (with 50% cytolytic doses of 6.7 x 10(-6)M, 3.0 x 10(-6)M and 7.4 x 10(-5)M respectively) [2].
 

High impact information on Bromoacetylcholine

 

Anatomical context of Bromoacetylcholine

 

Associations of Bromoacetylcholine with other chemical compounds

 

Gene context of Bromoacetylcholine

  • Thus, in HUVEC cultures, ChAT activity amounted to 0.78 +/- 0.15 nmol x mg protein(-1) x h(-1) (n = 3), but was only partially (about 50%) inhibited by the ChAT inhibitor bromoacetylcholine (30 microM) [16].
  • Enzymatically isolated human mucosa contained a rather low ChAT-like activity (0.5 nmol.mg protein 1.h-1), not sensitive to bromoacetylcholine [12].
  • This 600-fold higher affinity for the receptor than found from physiological studies [Kact congruent to 10 micrometers; Karlin, A. (1973) Fed. Proc. Fed. Am. Soc. Exp. Biol. 32, 1847--1853] can be attributed to a ligand-induced affinity change of the membrane-bound receptor upon preincubation with bromoacetylcholine [17].
  • Cytolytic effects of bromoacetylcholine on neuroblastoma in vitro [18].
  • ACh synthesis was not inhibited by bromoacetylcholine, a specific inhibitor of choline acetyltransferase (ChAT) [19].
 

Analytical, diagnostic and therapeutic context of Bromoacetylcholine

References

  1. Treatment of neuroblastoma in mice with bromoacetylcholine and bromoacetate. Chiou, C.Y. Journal of pharmaceutical sciences. (1978) [Pubmed]
  2. Cytolysis of rat glioma cells in vitro by autonomic drugs. Chiou, C.Y., Chu, C.J., Liddell, N.E. Archives internationales de pharmacodynamie et de thérapie. (1978) [Pubmed]
  3. Dynamics and orientation of N+(CD3)3-bromoacetylcholine bound to its binding site on the nicotinic acetylcholine receptor. Williamson, P.T., Watts, J.A., Addona, G.H., Miller, K.W., Watts, A. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  4. Neuronal alpha-bungarotoxin receptors differ structurally from other nicotinic acetylcholine receptors. Rangwala, F., Drisdel, R.C., Rakhilin, S., Ko, E., Atluri, P., Harkins, A.B., Fox, A.P., Salman, S.S., Green, W.N. J. Neurosci. (1997) [Pubmed]
  5. Effects of oxidizing and reducing analogs of acetylcholine on neuronal nicotinic receptors. Xie, Y., Jones, G.S., Loring, R.H. Mol. Pharmacol. (1992) [Pubmed]
  6. Agarose gel keratinocyte outgrowth system as a model of skin re-epithelization: requirement of endogenous acetylcholine for outgrowth initiation. Grando, S.A., Crosby, A.M., Zelickson, B.D., Dahl, M.V. J. Invest. Dermatol. (1993) [Pubmed]
  7. Evidence that the acetylcholine binding site is not formed by the sequence alpha 127-143 of the acetylcholine receptor. Criado, M., Sarin, V., Fox, J.L., Lindstrom, J. Biochemistry (1986) [Pubmed]
  8. Evidence for spare nicotinic acetylcholine receptors and a beta 4 subunit in bovine adrenal chromaffin cells: studies using bromoacetylcholine, epibatidine, cytisine and mAb35. Wenger, B.W., Bryant, D.L., Boyd, R.T., McKay, D.B. J. Pharmacol. Exp. Ther. (1997) [Pubmed]
  9. Kappa-bungarotoxin: a probe for the neuronal nicotinic receptor in the avian ciliary ganglion. Chiappinelli, V.A. Brain Res. (1983) [Pubmed]
  10. Stoichiometry of the ligand-binding sites in the acetylcholine-receptor oligomer from muscle and from electric organ. Measurement by affinity alkylation with bromoacetylcholine. Wolosin, J.M., Lyddiatt, A., Dolly, J.O., Barnard, E.A. Eur. J. Biochem. (1980) [Pubmed]
  11. Bromoacetylcholine and acetylcholinesterase introduced via liposomes into motor nerve endings block increases in quantal size. Brailoiu, E., der Kloot, W.V. Pflugers Arch. (1996) [Pubmed]
  12. Acetylcholine in isolated airways of rat, guinea pig, and human: species differences in role of airway mucosa. Reinheimer, T., Bernedo, P., Klapproth, H., Oelert, H., Zeiske, B., Racké, K., Wessler, I. Am. J. Physiol. (1996) [Pubmed]
  13. Characterization of curaremimetic neurotoxin binding sites on cellular membrane fragments derived from the rat pheochromocytoma PC12. Lukas, R.J. J. Neurochem. (1986) [Pubmed]
  14. Nereistoxin: a naturally occurring toxin with redox effects on neuronal nicotinic acetylcholine receptors in chick retina. Xie, Y., Lane, W.V., Loring, R.H. J. Pharmacol. Exp. Ther. (1993) [Pubmed]
  15. Cytolysis of neuroblastoma cells in vitro and treatment of neuronal tumors in vivo with bromoacetylcholine. Chiou, C.Y. Journal of pharmaceutical sciences. (1977) [Pubmed]
  16. The non-neuronal cholinergic system in the endothelium: evidence and possible pathobiological significance. Kirkpatrick, C.J., Bittinger, F., Unger, R.E., Kriegsmann, J., Kilbinger, H., Wessler, I. Jpn. J. Pharmacol. (2001) [Pubmed]
  17. Studies of reversible and irreversible interactions of an alkylating agonist with Torpedo californica acetylcholine receptor in membrane-bound and purified states. Moore, H.P., Raftery, M.A. Biochemistry (1979) [Pubmed]
  18. Cytolytic effects of bromoacetylcholine on neuroblastoma in vitro. Chiou, C.Y. Journal of pharmaceutical sciences. (1975) [Pubmed]
  19. Phorbol ester stimulates acetylcholine synthesis in cultured endothelial cells isolated from porcine cerebral microvessels. Ikeda, C., Morita, I., Mori, A., Fujimoto, K., Suzuki, T., Kawashima, K., Murota, S. Brain Res. (1994) [Pubmed]
  20. The reducing agent dithiothreitol (DTT) does not abolish the inhibitory nicotinic response recorded from rat dorsolateral septal neurons. Sorenson, E.M., Gallagher, J.P. Neurosci. Lett. (1993) [Pubmed]
  21. The nicotinic acetylcholine receptor from Discopyge tschudii: purification, characterization and reconstitution into liposomes. Ochoa, E.L., de Jiménez Bonino, M.B., Cascone, O., Medrano, S., Cousseau, M.B. Comp. Biochem. Physiol. C, Comp. Pharmacol. Toxicol. (1983) [Pubmed]
  22. Choline acetyltransferase activity and distribution in rat hearts after bilateral cervical vagotomy. Slavíková, J., Tucek, S. Physiologia Bohemoslovaca. (1985) [Pubmed]
 
WikiGenes - Universities