The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

Chat  -  choline acetyltransferase

Rattus norvegicus

This record was replaced with 290567.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chat

  • The application of this factor, ChAT development factor or CDF, to developing chick embryos during the period of naturally occurring motoneuron cell death significantly increased the survival of motoneurons but did not affect the survival of dorsal root ganglion neurons or sympathetic preganglionic neurons (column of Terni) [1].
  • NGF also produced hypertrophy of ChAT mRNA-positive neurons [2].
  • Prior to the onset of encephalitis alterations of one of the major cortical neurotransmitters, acetylcholine, were monitored immunohistochemically by light and electron microscopy of its synthesizing enzyme choline acetyltransferase (ChAT) [3].
  • SN/BF cultures of various ages were labeled with a retrovirus engineered to express beta-galactosidase (Lac-Z), and ChAT-positive descendants of the retrovirally labeled precursors were counted [4].
  • Influence of excitatory amino acids and ischemia on rat retinal choline acetyltransferase-containing cells [5].
 

Psychiatry related information on Chat

 

High impact information on Chat

 

Chemical compound and disease context of Chat

 

Biological context of Chat

  • The crystal structure of ChAT reported here shows the enzyme divided into two domains with the active site in a solvent accessible tunnel at the domain interface [20].
  • The structure indicates how ChAT is regulated by phosphorylation and reveals an unusual pattern of basic surface patches that may mediate membrane association or macromolecular interactions [20].
  • In the rat, alternative splicing generates common ChAT and peripheral ChAT (pChAT) [21].
  • Rescue of motoneurons from cell death by a purified skeletal muscle polypeptide: effects of the ChAT development factor, CDF [1].
  • IFN gamma does not cause a change in the affinity of ChAT for choline, nor does it affect cell proliferation [22].
 

Anatomical context of Chat

 

Associations of Chat with chemical compounds

 

Physical interactions of Chat

 

Co-localisations of Chat

 

Regulatory relationships of Chat

 

Other interactions of Chat

 

Analytical, diagnostic and therapeutic context of Chat

References

  1. Rescue of motoneurons from cell death by a purified skeletal muscle polypeptide: effects of the ChAT development factor, CDF. McManaman, J.L., Oppenheim, R.W., Prevette, D., Marchetti, D. Neuron (1990) [Pubmed]
  2. NGF induction of NGF receptor gene expression and cholinergic neuronal hypertrophy within the basal forebrain of the adult rat. Higgins, G.A., Koh, S., Chen, K.S., Gage, F.H. Neuron (1989) [Pubmed]
  3. Disturbance of the cortical cholinergic innervation in Borna disease prior to encephalitis. Gies, U., Bilzer, T., Stitz, L., Staiger, J.F. Brain Pathol. (1998) [Pubmed]
  4. Conditioned medium from activated microglia promotes cholinergic differentiation in the basal forebrain in vitro. Jonakait, G.M., Luskin, M.B., Wei, R., Tian, X.F., Ni, L. Dev. Biol. (1996) [Pubmed]
  5. Influence of excitatory amino acids and ischemia on rat retinal choline acetyltransferase-containing cells. Osborne, N.N., Larsen, A., Barnett, N.L. Invest. Ophthalmol. Vis. Sci. (1995) [Pubmed]
  6. Age-impaired impulse flow from nucleus basalis to cortex. Aston-Jones, G., Rogers, J., Shaver, R.D., Dinan, T.G., Moss, D.E. Nature (1985) [Pubmed]
  7. Nuclear factor kappaB/p49 is a negative regulatory factor in nerve growth factor-induced choline acetyltransferase promoter activity in PC12 cells. Toliver-Kinsky, T., Wood, T., Perez-Polo, J.R. J. Neurochem. (2000) [Pubmed]
  8. Nerve growth factor attenuates cholinergic deficits following traumatic brain injury in rats. Dixon, C.E., Flinn, P., Bao, J., Venya, R., Hayes, R.L. Exp. Neurol. (1997) [Pubmed]
  9. Behavioural parameters in aged rats are related to LTP and gene expression of ChAT and NMDA-NR2 subunits in the striatum. Schulz, D., Sergeeva, O.A., Ianovskii, E., Luhmann, H.J., Haas, H.L., Huston, J.P. Eur. J. Neurosci. (2004) [Pubmed]
  10. Postnatal development of choline acetyltransferase activity in the rat laterodorsal tegmental nucleus. Ninomiya, Y., Koyama, Y., Kayama, Y. Neurosci. Lett. (2001) [Pubmed]
  11. Ultrastructural localization of choline acetyltransferase in vascular endothelial cells in rat brain. Parnavelas, J.G., Kelly, W., Burnstock, G. Nature (1985) [Pubmed]
  12. Two types of cholinergic innervation in cortex, one co-localized with vasoactive intestinal polypeptide. Eckenstein, F., Baughman, R.W. Nature (1984) [Pubmed]
  13. Substance P in the ascending cholinergic reticular system. Vincent, S.R., Satoh, K., Armstrong, D.M., Fibiger, H.C. Nature (1983) [Pubmed]
  14. Immunochemical demonstration of reversible reduction in choline acetyltransferase concentration in rat hypoglossal nucleus after hypoglossal nerve transection. Wooten, G.F., Park, D.H., Joh, T.H., Reis, D.J. Nature (1978) [Pubmed]
  15. Transcriptional regulation of choline acetyltransferase gene by cyclic AMP. Misawa, H., Takahashi, R., Deguchi, T. J. Neurochem. (1993) [Pubmed]
  16. Choline acetyltransferase depletion in the rat retina after intraocular injection of neurotoxins. Gómez-Ramos, P., Estrada, C., Pérez-Rico, C. J. Neurochem. (1985) [Pubmed]
  17. Development of cholinergic pedunculopontine neurons in vitro: comparison with cholinergic septal cells and response to nerve growth factor, ciliary neuronotrophic factor, and retinoic acid. Knusel, B., Hefti, F. J. Neurosci. Res. (1988) [Pubmed]
  18. Acetylcholine levels, choline acetyltransferase and acetylcholinesterase molecular forms during thyroxine-induced cardiac hypertrophy. Nyquist-Battie, C., Hagler, K.E., Windberg, L., Thottassery, J.V. Neurochem. Int. (1993) [Pubmed]
  19. Neuroleptic-induced oral dyskinesias: effects of progabide and lack of correlation with regional changes in glutamic acid decarboxylase and choline acetyltransferase activities. Mithani, S., Atmadja, S., Baimbridge, K.G., Fibiger, H.C. Psychopharmacology (Berl.) (1987) [Pubmed]
  20. Choline acetyltransferase structure reveals distribution of mutations that cause motor disorders. Cai, Y., Cronin, C.N., Engel, A.G., Ohno, K., Hersh, L.B., Rodgers, D.W. EMBO J. (2004) [Pubmed]
  21. Peripheral Choline Acetyltransferase is Expressed by Monocytes and Upregulated During Renal Allograft Rejection in Rats. Hecker, A., Lips, K.S., Pfeil, U., Kummer, W., Padberg, W., Grau, V. J. Mol. Neurosci. (2006) [Pubmed]
  22. Interferon-gamma promotes cholinergic differentiation of embryonic septal nuclei and adjacent basal forebrain. Jonakait, G.M., Wei, R., Sheng, Z.L., Hart, R.P., Ni, L. Neuron (1994) [Pubmed]
  23. Toll-Like Receptor Ligands and CD154 Stimulate Microglia to Produce a Factor(s) That Promotes Excess Cholinergic Differentiation in the Developing Rat Basal Forebrain: Implications for Neurodevelopmental Disorders. Ni, L., Acevedo, G., Muralidharan, B., Padala, N., To, J., Jonakait, G.M. Pediatr. Res. (2007) [Pubmed]
  24. Innervation of rat iris by trigeminal and ciliary neurons expressing pChAT, a novel splice variant of choline acetyltransferase. Yasuhara, O., Aimi, Y., Shibano, A., Matsuo, A., Bellier, J.P., Park, M., Tooyama, I., Kimura, H. J. Comp. Neurol. (2004) [Pubmed]
  25. Expression of the cholinergic gene locus in the rat placenta. Pfeil, U., Vollerthun, R., Kummer, W., Lips, K.S. Histochem. Cell Biol. (2004) [Pubmed]
  26. Structural insights and functional implications of choline acetyltransferase. Govindasamy, L., Pedersen, B., Lian, W., Kukar, T., Gu, Y., Jin, S., Agbandje-McKenna, M., Wu, D., McKenna, R. J. Struct. Biol. (2004) [Pubmed]
  27. Cholinergic metabolism and synapse formation by a rat nerve cell line. Schubert, D., Heinemann, S., Kidokoro, Y. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  28. Fluorescence-activated cell sorting of embryonic mouse and rat motoneurons and their long-term survival in vitro. Schaffner, A.E., St John, P.A., Barker, J.L. J. Neurosci. (1987) [Pubmed]
  29. Fluctuations in relative levels of choline acetyltransferase mRNA in different regions of the rat basal forebrain across the estrous cycle: effects of estrogen and progesterone. Gibbs, R.B. J. Neurosci. (1996) [Pubmed]
  30. Development of cholinergic neurons in rat brain regions: dose-dependent effects of propylthiouracil-induced hypothyroidism. Sawin, S., Brodish, P., Carter, C.S., Stanton, M.E., Lau, C. Neurotoxicology and teratology. (1998) [Pubmed]
  31. Studies of sorbinil on axonal transport in streptozotocin-diabetic rats. Willars, G.B., Tomlinson, D.R., Robinson, J.P. Metab. Clin. Exp. (1986) [Pubmed]
  32. The urotensin II receptor is expressed in the cholinergic mesopontine tegmentum of the rat. Clark, S.D., Nothacker, H.P., Wang, Z., Saito, Y., Leslie, F.M., Civelli, O. Brain Res. (2001) [Pubmed]
  33. Rat fibroblast growth factor receptor-4 mRNA in the brain is preferentially expressed in cholinergic neurons in the medial habenular nucleus. Miyake, A., Itoh, N. Neurosci. Lett. (1996) [Pubmed]
  34. Evidence for the existence of L-dopa- and dopamine-immunoreactive nerve cell bodies in the caudal part of the dorsal motor nucleus of the vagus nerve. Manier, M., Feuerstein, C., Passagia, J.G., Mouchet, P., Mons, N., Geffard, M., Thibault, J. J. Chem. Neuroanat. (1990) [Pubmed]
  35. Fibroblast growth factors regulate calcitonin gene-related peptide mRNA expression in rat motoneurons after lesion and in culture. Piehl, F., Ji, R.R., Cullheim, S., Hökfelt, T., Lindholm, D., Hughes, R.A. Eur. J. Neurosci. (1995) [Pubmed]
  36. Thyrotropin-releasing hormone enhances choline acetyltransferase and creatine kinase in cultured spinal ventral horn neurons. Schmidt-Achert, K.M., Askanas, V., Engel, W.K. J. Neurochem. (1984) [Pubmed]
  37. Bcl-2 and GDNF delivered by HSV-mediated gene transfer after spinal root avulsion provide a synergistic effect. Natsume, A., Mata, M., Wolfe, D., Oligino, T., Goss, J., Huang, S., Glorioso, J., Fink, D.J. J. Neurotrauma (2002) [Pubmed]
  38. Brain-derived neurotrophic factor induced stimulation of septal choline acetyltransferase activity in ethylcholine mustard aziridinium treated rats. Willson, C.A., Hanin, I. Neurosci. Lett. (1997) [Pubmed]
  39. PACAP and NGF cooperatively enhance choline acetyltransferase activity in postnatal basal forebrain neurons by complementary induction of its different mRNA species. Yuhara, A., Ishii, K., Nishio, C., Abiru, Y., Yamada, M., Nawa, H., Hatanaka, H., Takei, N. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  40. Effects of aging and amyloid-beta peptides on choline acetyltransferase activity in rat brain. Zambrzycka, A., Alberghina, M., Strosznajder, J.B. Neurochem. Res. (2002) [Pubmed]
  41. Brain-derived neurotrophic factor spares choline acetyltransferase mRNA following axotomy of motor neurons in vivo. Wang, W., Salvaterra, P.M., Loera, S., Chiu, A.Y. J. Neurosci. Res. (1997) [Pubmed]
  42. Insulin-like growth factor-I inhibits endogenous acetylcholine release from the rat hippocampal formation: possible involvement of GABA in mediating the effects. Seto, D., Zheng, W.H., McNicoll, A., Collier, B., Quirion, R., Kar, S. Neuroscience (2002) [Pubmed]
  43. GABAB and CB1 cannabinoid receptor expression identifies two types of septal cholinergic neurons. Nyíri, G., Szabadits, E., Cserép, C., Mackie, K., Shigemoto, R., Freund, T.F. Eur. J. Neurosci. (2005) [Pubmed]
  44. Differential expression of N-methyl-D-aspartate receptor subunit messenger ribonucleic acids and immunoreactivity in the rat neostriatum during postnatal development. Lau, W.K., Lui, P.W., Wong, C.K., Chan, Y.S., Yung, K.K. Neurochem. Int. (2003) [Pubmed]
  45. Crystallization and preliminary X-ray crystallographic studies on recombinant rat choline acetyltransferase. Lian, W., Gu, Y., Pedersen, B., Kukar, T., Govindasamy, L., Agbandje-McKenna, M., Jin, S., McKenna, R., Wu, D. Acta Crystallogr. D Biol. Crystallogr. (2004) [Pubmed]
  46. Differential expression of calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT) in the axotomized motoneurons of normoxic and hypoxic rats. Chang, H.M., Wei, I.H., Tseng, C.Y., Lue, J.H., Wen, C.Y., Shieh, J.Y. J. Chem. Neuroanat. (2004) [Pubmed]
  47. Localization of choline acetyltransferase in rat peripheral sympathetic neurons and its coexistence with nitric oxide synthase and neuropeptides. Morales, M.A., Holmberg, K., Xu, Z.Q., Cozzari, C., Hartman, B.K., Emson, P., Goldstein, M., Elfvin, L.G., Hökfelt, T. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
 
WikiGenes - Universities