The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Erythroblasts

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Erythroblasts

 

High impact information on Erythroblasts

  • It also reduces the capacity of ts sea- and ts erbB-transformed erythroblasts to differentiate terminally in an erythropoietin-dependent manner after a temperature shift [6].
  • Expression of a caspase-resistant GATA-1 mutant, but not of the wild-type gene, completely restored erythroid expansion and differentiation following the triggering of death receptors, indicating that there is regulatory feedback between mature and immature erythroblasts through caspase-mediated cleavage of GATA-1 [2].
  • In man, a shift from gamma- to beta-globin gene expression in erythroblasts underlies a switch from fetal to adult haemoglobin during development [7].
  • Furthermore, zeta- and beta-globin synthesis is restricted to primitive and definitive erythroblasts respectively [8].
  • Mutant embryos produced normal numbers of megakaryocytes and erythroid progenitors, but some showed an impairment of erythroblast maturation [9].
 

Chemical compound and disease context of Erythroblasts

 

Biological context of Erythroblasts

 

Anatomical context of Erythroblasts

 

Associations of Erythroblasts with chemical compounds

  • When stably introduced into primary erythroblasts or conditionally transformed erythroid progenitors cells, exogenous GATA-2/ER promoted proliferation and inhibited terminal differentiation in an estrogen-dependent manner [25].
  • To test the hypothesis that phosphorylation of Ser-16/17 regulates gag/v-erbA protein function, mutant proteins in which Ser-16/17 had been changed to alanine or threonine residues were analyzed for their ability to inhibit erythroid differentiation of ts v-erbB or ts v-sea-transformed erythroblasts at nonpermissive temperature [15].
  • In stably transformed erythroblasts coexpressing the v-erbA oncoprotein and the c-erbA/T3 receptor at an approximately equimolar ratio, c-erbA activity is dominant over v-erbA [26].
  • delta-Aminolevulinic acid synthetase in erythroblasts of patients with pyridoxine-responsive anemia. Hypercatabolism caused by the increased susceptibility to the controlling protease [23].
  • Apparent affinity to pyridoxal phosphate of the apo-delta-aminolevulinic acid synthetase obtained from erythroblasts of the patients was almost the same as that of normal controls [23].
 

Gene context of Erythroblasts

  • In this study, we report data showing that immature human erythroblasts express the integrins VLA-4 and VLA-5 and that both these molecules act as fibronectin receptors on these cells [27].
  • GATA transcription factors associate with a novel class of nuclear bodies in erythroblasts and megakaryocytes [28].
  • Forced expression of Ldb1 in G1ER proerythroblast cells inhibited cellular maturation, a finding compatible with the decrease in Ldb1 gene expression that normally occurs during erythroid differentiation [29].
  • Binding of 125I-EPO to erythroblasts also showed a steady decline of the cell surface binding during maturation and terminal differentiation [30].
  • These results suggest that constitutive activations of PI3K/AKT and PKC/MAPK pathways can act in synergy to lead a proerythroblast to proliferate without Epo [31].
 

Analytical, diagnostic and therapeutic context of Erythroblasts

References

  1. Acquired iron-deficiency anemia caused by an antibody against the transferrin receptor. Larrick, J.W., Hyman, E.S. N. Engl. J. Med. (1984) [Pubmed]
  2. Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. De Maria, R., Zeuner, A., Eramo, A., Domenichelli, C., Bonci, D., Grignani, F., Srinivasula, S.M., Alnemri, E.S., Testa, U., Peschle, C. Nature (1999) [Pubmed]
  3. elk, tissue-specific ets-related genes on chromosomes X and 14 near translocation breakpoints. Rao, V.N., Huebner, K., Isobe, M., ar-Rushdi, A., Croce, C.M., Reddy, E.S. Science (1989) [Pubmed]
  4. A rabbit reticulocyte model for the role of hemin-controlled repressor in hypochromic anemias. Freedman, M.L., Rosman, J. J. Clin. Invest. (1976) [Pubmed]
  5. G-protein alpha subunit Gi(alpha)2 mediates erythropoietin signal transduction in human erythroid precursors. Miller, B.A., Bell, L., Hansen, C.A., Robishaw, J.D., Linder, M.E., Cheung, J.Y. J. Clin. Invest. (1996) [Pubmed]
  6. v-erbA cooperates with sarcoma oncogenes in leukemic cell transformation. Kahn, P., Frykberg, L., Brady, C., Stanley, I., Beug, H., Vennström, B., Graf, T. Cell (1986) [Pubmed]
  7. Increased gamma-globin expression in a nondeletion HPFH mediated by an erythroid-specific DNA-binding factor. Martin, D.I., Tsai, S.F., Orkin, S.H. Nature (1989) [Pubmed]
  8. Haemoglobin switching in human embryos: asynchrony of zeta----alpha and epsilon----gamma-globin switches in primitive and definite erythropoietic lineage. Peschle, C., Mavilio, F., Carè, A., Migliaccio, G., Migliaccio, A.R., Salvo, G., Samoggia, P., Petti, S., Guerriero, R., Marinucci, M. Nature (1985) [Pubmed]
  9. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Scott, E.W., Simon, M.C., Anastasi, J., Singh, H. Science (1994) [Pubmed]
  10. Subunit structure of the erythropoietin receptor. McCaffery, P.J., Fraser, J.K., Lin, F.K., Berridge, M.V. J. Biol. Chem. (1989) [Pubmed]
  11. Effect of hypoxia on erythroblasts from avian fetal liver: adenosine triphosphate levels and hemoglobin synthesis. Schwartz, A.L., Schwartz, R., Schwartz, H.C. Pediatr. Res. (1976) [Pubmed]
  12. Radioprotective effects of the thiols GSH and WR-2721 against X-ray-induction of micronuclei in erythroblasts. Mazur, L. Mutat. Res. (2000) [Pubmed]
  13. Effects of thyroid hormone and hypoxia on 2,3-bisphosphoglycerate, bisphosphoglycerate synthase and phosphoglycerate mutase in rabbit erythroblasts and reticulocytes in vivo. González-Cinca, N., Pérez de la Ossa, P., Carreras, J., Climent, F. Horm. Res. (2004) [Pubmed]
  14. Childhood hypoplastic anemia with sugar chain anomaly of red cell membranes. Shibuya, A. Pediatrics international : official journal of the Japan Pediatric Society. (2001) [Pubmed]
  15. Phosphorylation of the v-erbA protein is required for its function as an oncogene. Glineur, C., Zenke, M., Beug, H., Ghysdael, J. Genes Dev. (1990) [Pubmed]
  16. Multipotential differentiation ability of GATA-1-null erythroid-committed cells. Kitajima, K., Zheng, J., Yen, H., Sugiyama, D., Nakano, T. Genes Dev. (2006) [Pubmed]
  17. Distinct roles of erythropoietin, insulin-like growth factor I, and stem cell factor in the development of erythroid progenitor cells. Muta, K., Krantz, S.B., Bondurant, M.C., Wickrema, A. J. Clin. Invest. (1994) [Pubmed]
  18. Ion channels in human erythroblasts. Modulation by erythropoietin. Cheung, J.Y., Elensky, M.B., Brauneis, U., Scaduto, R.C., Bell, L.L., Tillotson, D.L., Miller, B.A. J. Clin. Invest. (1992) [Pubmed]
  19. A 3'-flanking NF-kappaB site mediates developmental silencing of the human zeta-globin gene. Wang, Z., Liebhaber, S.A. EMBO J. (1999) [Pubmed]
  20. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Kulessa, H., Frampton, J., Graf, T. Genes Dev. (1995) [Pubmed]
  21. Differentiation in vitro of T3+ large granular lymphocytes with characteristic cytotoxic activity from an isolated hematopoietic progenitor colony. Minato, N., Hattori, M., Sudo, T., Kano, S., Miura, Y., Suda, J., Suda, T. J. Exp. Med. (1988) [Pubmed]
  22. In vitro studies on the enhancement of Rauscher virus-induced erythroblastosis by complete Freund's adjuvant in BALB/c mice. Nooter, K., Bentvelzen, P. J. Natl. Cancer Inst. (1976) [Pubmed]
  23. delta-Aminolevulinic acid synthetase in erythroblasts of patients with pyridoxine-responsive anemia. Hypercatabolism caused by the increased susceptibility to the controlling protease. Aoki, Y., Muranaka, S., Nakabayashi, K., Ueda, Y. J. Clin. Invest. (1979) [Pubmed]
  24. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. Emambokus, N., Vegiopoulos, A., Harman, B., Jenkinson, E., Anderson, G., Frampton, J. EMBO J. (2003) [Pubmed]
  25. Ectopic expression of a conditional GATA-2/estrogen receptor chimera arrests erythroid differentiation in a hormone-dependent manner. Briegel, K., Lim, K.C., Plank, C., Beug, H., Engel, J.D., Zenke, M. Genes Dev. (1993) [Pubmed]
  26. v-erbA overexpression is required to extinguish c-erbA function in erythroid cell differentiation and regulation of the erbA target gene CAII. Disela, C., Glineur, C., Bugge, T., Sap, J., Stengl, G., Dodgson, J., Stunnenberg, H., Beug, H., Zenke, M. Genes Dev. (1991) [Pubmed]
  27. Coexpression of two fibronectin receptors, VLA-4 and VLA-5, by immature human erythroblastic precursor cells. Rosemblatt, M., Vuillet-Gaugler, M.H., Leroy, C., Coulombel, L. J. Clin. Invest. (1991) [Pubmed]
  28. GATA transcription factors associate with a novel class of nuclear bodies in erythroblasts and megakaryocytes. Elefanty, A.G., Antoniou, M., Custodio, N., Carmo-Fonseca, M., Grosveld, F.G. EMBO J. (1996) [Pubmed]
  29. The LIM-domain binding protein Ldb1 and its partner LMO2 act as negative regulators of erythroid differentiation. Visvader, J.E., Mao, X., Fujiwara, Y., Hahm, K., Orkin, S.H. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  30. Differentiation and erythropoietin receptor gene expression in human erythroid progenitor cells. Wickrema, A., Krantz, S.B., Winkelmann, J.C., Bondurant, M.C. Blood (1992) [Pubmed]
  31. Alterations of the phosphoinositide 3-kinase and mitogen-activated protein kinase signaling pathways in the erythropoietin-independent Spi-1/PU.1 transgenic proerythroblasts. Barnache, S., Mayeux, P., Payrastre, B., Moreau-Gachelin, F. Blood (2001) [Pubmed]
  32. The hSK4 (KCNN4) isoform is the Ca2+-activated K+ channel (Gardos channel) in human red blood cells. Hoffman, J.F., Joiner, W., Nehrke, K., Potapova, O., Foye, K., Wickrema, A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  33. Fas-L up-regulation by highly malignant myeloma plasma cells: role in the pathogenesis of anemia and disease progression. Silvestris, F., Tucci, M., Cafforio, P., Dammacco, F. Blood (2001) [Pubmed]
  34. Expression of the c-fos protooncogene by human and murine erythroblasts. Caubet, J.F., Mitjavila, M.T., Dubart, A., Roten, D., Weil, S.C., Vainchenker, W. Blood (1989) [Pubmed]
  35. A novel form of congenital dyserythropoietic anemia associated with deficiency of erythroid CD44 and a unique blood group phenotype [In(a-b-), Co(a-b-)]. Parsons, S.F., Jones, J., Anstee, D.J., Judson, P.A., Gardner, B., Wiener, E., Poole, J., Illum, N., Wickramasinghe, S.N. Blood (1994) [Pubmed]
  36. Transforming growth factor-alpha (TGF-alpha) in human bone marrow: demonstration of TGF-alpha in erythroblasts and eosinophilic precursor cells and of epidermal growth factor receptors in blastlike cells of myelomonocytic origin. Walz, T.M., Malm, C., Nishikawa, B.K., Wasteson, A. Blood (1995) [Pubmed]
 
WikiGenes - Universities