The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Cycloguanil     1-(4-chlorophenyl)-6,6- dimethyl-1,3,5...

Synonyms: Cycloguanyl, cycloquanil, Cycloguanilum, CHEMBL747, GNF-PF-2519, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of NSC 3074

 

High impact information on NSC 3074

 

Chemical compound and disease context of NSC 3074

 

Biological context of NSC 3074

 

Anatomical context of NSC 3074

 

Associations of NSC 3074 with other chemical compounds

  • Although the human enzyme also resulted in greater resistance to cycloguanil, no decrease was found in the level of susceptibility of transformed parasites to proguanil, thus providing evidence of intrinsic activity of this parent compound against a target other than DHFR [1].
  • The sulfinyl- and sulfonylquinazolines also retained antimalarial effects against chloroquine-, cycloguanil-, and DDS-resistant lines of P. berghei in mice and against chloroquine- and pyrimethamine-resistant strains of P. falciparum in owl monkeys [19].
  • Development of a lead inhibitor for the A16V+S108T mutant of dihydrofolate reductase from the cycloguanil-resistant strain (T9/94) of Plasmodium falciparum [20].
  • The Ala16Val+Ser108Thr (A16V+S108T) mutant of the Plasmodium falciparum dihydrofolate reductase (DHFR) is a key mutant responsible for cycloguanil-resistant malaria due to steric interaction between Val-16 and one of the C-2 methyl groups of cycloguanil [20].
  • At a proguanil concentration of 20 microM, omeprazole at 10 microM inhibited cycloguanil formation in vitro by 47 +/- 59% [21].
 

Gene context of NSC 3074

 

Analytical, diagnostic and therapeutic context of NSC 3074

References

  1. Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Fidock, D.A., Wellems, T.E. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  2. Intrinsic efficacy of proguanil against falciparum and vivax malaria independent of the metabolite cycloguanil. Kaneko, A., Bergqvist, Y., Takechi, M., Kalkoa, M., Kaneko, O., Kobayakawa, T., Ishizaki, T., Björkman, A. J. Infect. Dis. (1999) [Pubmed]
  3. Antifolate studies. Activities of 40 potential antimalarial compounds against sensitive and chlorguanide triazine resistant strains of folate-requiring bacteria and Escherichia coli. Genther, C.S., Smith, C.S. J. Med. Chem. (1977) [Pubmed]
  4. Effects of cimetidine on the pharmacokinetics of proguanil in healthy subjects and in peptic ulcer patients. Kolawole, J.A., Mustapha, A., Abdul-Aguye, I., Ochekpe, N., Taylor, R.B. Journal of pharmaceutical and biomedical analysis. (1999) [Pubmed]
  5. Hepatic cytochrome P450 CYP2C activity in psoriasis: studies using proguanil as a probe compound. Helsby, N.A., Ward, S.A., Parslew, R.A., Friedmann, P.S., Rhodes, L.E. Acta Derm. Venereol. (1998) [Pubmed]
  6. Amino acids in the dihydrofolate reductase-thymidylate synthase gene of Plasmodium falciparum involved in cycloguanil resistance differ from those involved in pyrimethamine resistance. Foote, S.J., Galatis, D., Cowman, A.F. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  7. A biochemical and genetic model for parasite resistance to antifolates. Toxoplasma gondii provides insights into pyrimethamine and cycloguanil resistance in Plasmodium falciparum. Reynolds, M.G., Roos, D.S. J. Biol. Chem. (1998) [Pubmed]
  8. Slow chloroguanide metabolism in Tanzanians compared with white subjects and Asian subjects confirms a decreased CYP2C19 activity in relation to genotype. Herrlin, K., Massele, A.Y., Rimoy, G., Alm, C., Rais, M., Ericsson, O., Bertilsson, L., Gustafsson, L.L. Clin. Pharmacol. Ther. (2000) [Pubmed]
  9. Fluvoxamine inhibits the CYP2C19-catalyzed bioactivation of chloroguanide. Jeppesen, U., Rasmussen, B.B., Brøsen, K. Clin. Pharmacol. Ther. (1997) [Pubmed]
  10. Relation between chloroguanide bioactivation to cycloguanil and the genetically determined metabolism of mephenytoin in humans. Funck-Brentano, C., Bosco, O., Jacqz-Aigrain, E., Keundjian, A., Jaillon, P. Clin. Pharmacol. Ther. (1992) [Pubmed]
  11. Phagocytosis and bactericidal activity of human leucocytes under influence of antimalarial drugs. Kharazmi, A., Eriksen, H.O. Trans. R. Soc. Trop. Med. Hyg. (1986) [Pubmed]
  12. The pharmacokinetics of atovaquone and proguanil in pregnant women with acute falciparum malaria. McGready, R., Stepniewska, K., Edstein, M.D., Cho, T., Gilveray, G., Looareesuwan, S., White, N.J., Nosten, F. Eur. J. Clin. Pharmacol. (2003) [Pubmed]
  13. Molecular basis of differential resistance to cycloguanil and pyrimethamine in Plasmodium falciparum malaria. Peterson, D.S., Milhous, W.K., Wellems, T.E. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  14. Proguanil resistance in Plasmodium falciparum African isolates: assessment by mutation-specific polymerase chain reaction and in vitro susceptibility testing. Parzy, D., Doerig, C., Pradines, B., Rico, A., Fusai, T., Doury, J.C. Am. J. Trop. Med. Hyg. (1997) [Pubmed]
  15. In vitro activity of pyrimethamine, cycloguanil, and other antimalarial drugs against African isolates and clones of Plasmodium falciparum. Basco, L.K., Ramiliarisoa, O., Le Bras, J. Am. J. Trop. Med. Hyg. (1994) [Pubmed]
  16. Comparison of (S)-mephenytoin and proguanil oxidation in vitro: contribution of several CYP isoforms. Coller, J.K., Somogyi, A.A., Bochner, F. British journal of clinical pharmacology. (1999) [Pubmed]
  17. In vitro activity of antimalarial compounds on the exoerythrocytic stages of Plasmodium cynomolgi and P. knowlesi. Fisk, T.L., Millet, P., Collins, W.E., Nguyen-Dinh, P. Am. J. Trop. Med. Hyg. (1989) [Pubmed]
  18. Effect of proguanil and cycloguanil on human lymphocytes in vitro. Bygbjerg, I.C. Eur. J. Clin. Pharmacol. (1985) [Pubmed]
  19. Folate antagonists. 15. 2,3-Diamino-6-(2-naphthylsulfonyl)quinazoline and related 2,4-diamino-6-[(phenyl and naphthyl)sulfinyl and sulfonyl]quinazolines, a potent new class of antimetabolites with phenomenal antimalarial activity. Elslager, E.F., Hutt, M.P., Jacob, P., Johnson, J., Temporelli, B., Werbel, L.M., Worth, D.F., Rane, L. J. Med. Chem. (1979) [Pubmed]
  20. Development of a lead inhibitor for the A16V+S108T mutant of dihydrofolate reductase from the cycloguanil-resistant strain (T9/94) of Plasmodium falciparum. Yuthavong, Y., Vilaivan, T., Chareonsethakul, N., Kamchonwongpaisan, S., Sirawaraporn, W., Quarrell, R., Lowe, G. J. Med. Chem. (2000) [Pubmed]
  21. Inhibition by omeprazole of proguanil metabolism: mechanism of the interaction in vitro and prediction of in vivo results from the in vitro experiments. Funck-Brentano, C., Becquemont, L., Lenevu, A., Roux, A., Jaillon, P., Beaune, P. J. Pharmacol. Exp. Ther. (1997) [Pubmed]
  22. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Desta, Z., Zhao, X., Shin, J.G., Flockhart, D.A. Clinical pharmacokinetics. (2002) [Pubmed]
  23. Analysis in yeast of antimalaria drugs that target the dihydrofolate reductase of Plasmodium falciparum. Wooden, J.M., Hartwell, L.H., Vasquez, B., Sibley, C.H. Mol. Biochem. Parasitol. (1997) [Pubmed]
  24. In vitro proguanil activation to cycloguanil by human liver microsomes is mediated by CYP3A isoforms as well as by S-mephenytoin hydroxylase. Birkett, D.J., Rees, D., Andersson, T., Gonzalez, F.J., Miners, J.O., Veronese, M.E. British journal of clinical pharmacology. (1994) [Pubmed]
  25. Point mutations in the dihydrofolate reductase and dihydropteroate synthetase genes and in vitro susceptibility to pyrimethamine and cycloguanil of Plasmodium falciparum isolates from Papua New Guinea. Reeder, J.C., Rieckmann, K.H., Genton, B., Lorry, K., Wines, B., Cowman, A.F. Am. J. Trop. Med. Hyg. (1996) [Pubmed]
  26. High-performance liquid chromatography of proguanil, cycloguanil and 4-chlorophenylbiguanide using hydrophobic pairing ion and its application to serum assay. Moody, R.R., Selkirk, A.B., Taylor, R.B. J. Chromatogr. (1980) [Pubmed]
  27. A sensitive bioassay for serum cycloguanil using Plasmodium falciparum in vitro. Scott, H.V., Edstein, M.D., Veenendaal, J.R., Rieckmann, K.H. Int. J. Parasitol. (1988) [Pubmed]
  28. Disposition of proguanil in Thai patients with uncomplicated falciparum malaria. Edstein, M.D., Looareesuwan, S., Wilairatana, P., Vanijanonta, S., Kyle, D.E., Rieckmann, K.H. Am. J. Trop. Med. Hyg. (1997) [Pubmed]
  29. Relationship between proguanil metabolic ratio and CYP2C19 genotype in a Caucasian population. Hoskins, J.M., Shenfield, G.M., Gross, A.S. British journal of clinical pharmacology. (1998) [Pubmed]
  30. Ex vivo antimalarial activity of proguanil combined with dapsone against cycloguanil-resistant Plasmodium falciparum isolates. Edstein, M.D., Yeo, A.E., Shanks, G.D., Rieckmann, K.H. Acta Trop. (1997) [Pubmed]
 
WikiGenes - Universities