The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

gpa-16  -  Protein GPA-16

Caenorhabditis elegans

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

High impact information on G-protein

 

Biological context of G-protein

 

Anatomical context of G-protein

  • These channels, as well as the G-protein Galpha(o), function in neuroendocrine cells to promote release of neurotransmitters that block egg laying until eggs filling the uterus deform the neuroendocrine cells [10].
  • AF2 interaction with Ascaris suum body wall muscle membranes involves G-protein activation [11].
  • CONCLUSIONS: Our findings show that oocyte Eph receptor and somatic cell G protein signaling pathways control meiotic diapause in C. elegans, highlighting contrasts and parallels between MSP signaling in C. elegans and luteinizing hormone signaling in mammals [12].
 

Associations of G-protein with chemical compounds

  • Among the three G-protein-linked acetylcholine receptors (GARs) in Caenorhabditis elegans (C. elegans), GAR-3 is structurally and pharmacologically most similar to mammalian muscarinic acetylcholine receptors (mAChRs) [13].
  • mGluRs (metabotropic glutamate receptors) are G-protein-coupled receptors that play an important neuromodulatory role in the brain [14].
  • This paper is the first comprehensive study of G protein-coupled serotonin receptors of C. elegans [15].
 

Other interactions of G-protein

  • The signaling cascade is only partially dependent on the phospholipase C beta (EGL-8) and is negatively regulated by G alpha(o) [GOA-1 (G-protein, O, alpha subunit family member 1)] and calcium/calmodulin-dependent kinase [UNC-43 (uncoordinated family member 43)] [16].
  • RNAi depletion of gpr-1 and gpr-2, homologs of mammalian AGS3 and Drosophila PINS (receptor-independent G protein regulators), results in a phenotype identical to that of embryos depleted of both GPA-16 and GOA-1; the first cleavage is symmetric, but polarity is not affected [17].
  • To further analyze Galpha(o) signaling, we cloned the egl-47 gene, which was identified by two dominant mutations that severely inhibit egg laying. egl-47 encodes two orphan G-protein-coupled receptor isoforms, which share all seven transmembrane domains but have different extracellular N termini [18].
  • Here we show that the same Ca2+/MAPK pathway promotes str-2 expression in the AWC and ASI neurons together with multiple cell-autonomous and noncell-autonomous G-protein-signaling pathways [9].
  • MAU-8 is a Phosducin-like Protein required for G protein signaling in C. elegans [19].

References

  1. EGL-10 regulates G protein signaling in the C. elegans nervous system and shares a conserved domain with many mammalian proteins. Koelle, M.R., Horvitz, H.R. Cell (1996) [Pubmed]
  2. Signal transduction in the Caenorhabditis elegans nervous system. Bargmann, C.I., Kaplan, J.M. Annu. Rev. Neurosci. (1998) [Pubmed]
  3. Participation of the protein Go in multiple aspects of behavior in C. elegans. Mendel, J.E., Korswagen, H.C., Liu, K.S., Hajdu-Cronin, Y.M., Simon, M.I., Plasterk, R.H., Sternberg, P.W. Science (1995) [Pubmed]
  4. Antagonism between G(o)alpha and G(q)alpha in Caenorhabditis elegans: the RGS protein EAT-16 is necessary for G(o)alpha signaling and regulates G(q)alpha activity. Hajdu-Cronin, Y.M., Chen, W.J., Patikoglou, G., Koelle, M.R., Sternberg, P.W. Genes Dev. (1999) [Pubmed]
  5. C. elegans G Protein Regulator RGS-3 Controls Sensitivity to Sensory Stimuli. Ferkey, D.M., Hyde, R., Haspel, G., Dionne, H.M., Hess, H.A., Suzuki, H., Schafer, W.R., Koelle, M.R., Hart, A.C. Neuron (2007) [Pubmed]
  6. LET-99 opposes Galpha/GPR signaling to generate asymmetry for spindle positioning in response to PAR and MES-1/SRC-1 signaling. Tsou, M.F., Hayashi, A., Rose, L.S. Development (2003) [Pubmed]
  7. Chemical genetics reveals an RGS/G-protein role in the action of a compound. Fitzgerald, K., Tertyshnikova, S., Moore, L., Bjerke, L., Burley, B., Cao, J., Carroll, P., Choy, R., Doberstein, S., Dubaquie, Y., Franke, Y., Kopczynski, J., Korswagen, H., Krystek, S.R., Lodge, N.J., Plasterk, R., Starrett, J., Stouch, T., Thalody, G., Wayne, H., van der Linden, A., Zhang, Y., Walker, S.G., Cockett, M., Wardwell-Swanson, J., Ross-Macdonald, P., Kindt, R.M. PLoS Genet. (2006) [Pubmed]
  8. Opposing functions of calcineurin and CaMKII regulate G-protein signaling in egg-laying behavior of C.elegans. Lee, J., Jee, C., Song, H.O., Bandyopadhyay, J., Lee, J.I., Yu, J.R., Lee, J., Park, B.J., Ahnn, J. J. Mol. Biol. (2004) [Pubmed]
  9. Noncell- and cell-autonomous G-protein-signaling converges with Ca2+/mitogen-activated protein kinase signaling to regulate str-2 receptor gene expression in Caenorhabditis elegans. Lans, H., Jansen, G. Genetics (2006) [Pubmed]
  10. A Specific Subset of Transient Receptor Potential Vanilloid-Type Channel Subunits in Caenorhabditis elegans Endocrine Cells Function as Mixed Heteromers to Promote Neurotransmitter Release. Jose, A.M., Bany, I.A., Chase, D.L., Koelle, M.R. Genetics (2007) [Pubmed]
  11. AF2 interaction with Ascaris suum body wall muscle membranes involves G-protein activation. Kubiak, T.M., Larsen, M.J., Davis, J.P., Zantello, M.R., Bowman, J.W. Biochem. Biophys. Res. Commun. (2003) [Pubmed]
  12. Galphao/i and Galphas signaling function in parallel with the MSP/Eph receptor to control meiotic diapause in C. elegans. Govindan, J.A., Cheng, H., Harris, J.E., Greenstein, D. Curr. Biol. (2006) [Pubmed]
  13. Stimulation of cyclic AMP production by the Caenorhabditis elegans muscarinic acetylcholine receptor GAR-3 in Chinese hamster ovary cells. Park, Y.S., Cho, T.J., Cho, N.J. Arch. Biochem. Biophys. (2006) [Pubmed]
  14. Molecular characterization of the metabotropic glutamate receptor family in Caenorhabditis elegans. Dillon, J., Hopper, N.A., Holden-Dye, L., O'connor, V. Biochem. Soc. Trans. (2006) [Pubmed]
  15. Characterization of the Caenorhabditis elegans G protein-coupled serotonin receptors. Carre-Pierrat, M., Baillie, D., Johnsen, R., Hyde, R., Hart, A., Granger, L., S??galat, L. Invert. Neurosci. (2006) [Pubmed]
  16. Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans. Suo, S., Kimura, Y., Van Tol, H.H. J. Neurosci. (2006) [Pubmed]
  17. Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Gotta, M., Dong, Y., Peterson, Y.K., Lanier, S.M., Ahringer, J. Curr. Biol. (2003) [Pubmed]
  18. Activation of EGL-47, a Galpha(o)-coupled receptor, inhibits function of hermaphrodite-specific motor neurons to regulate Caenorhabditis elegans egg-laying behavior. Moresco, J.J., Koelle, M.R. J. Neurosci. (2004) [Pubmed]
  19. MAU-8 is a Phosducin-like Protein required for G protein signaling in C. elegans. Lacoste, C., Barthaux, V., Iborra, C., Seagar, M., Erard-Garcia, M. Dev. Biol. (2006) [Pubmed]
 
WikiGenes - Universities