The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

myo-1  -  Protein MYO-1

Caenorhabditis elegans

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of let-75


High impact information on let-75

  • Sequence analysis of 16 sdc-3 alleles reveals that the dosage compensation mutations specifically eliminate a pair of zinc finger motifs at the carboxyl terminus of Sdc-3, while the sex determination mutations after a region with limited homology to the ATP-binding domain of myosin [2].
  • Since this end of the gene corresponds to the 5' end of the coding sequence, these suppressor mutations probably result in amino acid substitutions in the globular head of the myosin molecule, and should be of value in studies of myosin force generation [3].
  • Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle [4].
  • The location of the protein in the A-band, along with earlier genetic data, suggests that the unc-22 product may interact with myosin to regulate its function [5].
  • Here, we describe a new muscle LIM domain protein, UNC-95, and identify it as a novel target for the RING finger protein RNF-5 in the Caenorhabditis elegans body wall muscle. unc-95(su33) animals have disorganized muscle actin and myosin-containing filaments as a result of a failure to assemble normal muscle adhesion structures [6].

Biological context of let-75

  • We have used transformation-rescue and lacZ fusion assays to determine sequence requirements for regulated myosin gene expression during development [7].
  • To further characterize the myosin gene promoters and to examine the types of enhancer sequences in the genome, we have initiated a screen of C. elegans genomic DNA for fragments capable of enhancing the myo-2 promoter [7].
  • Myosin heavy chain gene amplification as a suppressor mutation in Caenorhabditis elegans [8].
  • The encoded amino acid substitutions of s95 and s74 are in the 23 X 10(3) Mr and 50 X 10(3) Mr domains of the myosin head, flanking the ATP binding site [9].
  • The three deletion mutations were found in a region of the myosin rod with numerous direct and inverted nucleotide sequence repeats, but their origin cannot be accounted for by homologous recombination [9].

Anatomical context of let-75


Associations of let-75 with chemical compounds


Regulatory relationships of let-75


Other interactions of let-75

  • Comparison of the unc-54 protein sequence with the sequence of a second myosin heavy chain from nematode, indicates that the globular head sequence S-1 is more highly conserved than the alpha-helical coiled-coil rod [21].
  • We show that C. elegans IP(3)Rs, encoded by the gene itr-1, interact directly with myosin II [22].
  • The thick filaments of the nematode, Caenorhabditis elegans, arising predominantly from the body-wall muscles, contain two myosin isoforms and paramyosin as their major proteins [23].
  • Caenorhabditis elegans body wall muscle contains two isoforms of myosin heavy chain, MHC A and MHC B, that differ in their ability to initiate thick filament assembly [13].
  • Using RNA-mediated genetic interference in a phenotypic screen, we identified a conserved nonmuscle myosin II regulatory light chain gene in Caenorhabditis elegans, which we name mlc-4 [14].

Analytical, diagnostic and therapeutic context of let-75


  1. Comparison of the body wall myosin heavy chain sequences from Onchocerca volvulus and Brugia malayi. Werner, C., Rajan, T.V. Mol. Biochem. Parasitol. (1992) [Pubmed]
  2. Independent domains of the Sdc-3 protein control sex determination and dosage compensation in C. elegans. Klein, R.D., Meyer, B.J. Cell (1993) [Pubmed]
  3. Mutations in the unc-54 myosin heavy chain gene of Caenorhabditis elegans that alter contractility but not muscle structure. Moerman, D.G., Plurad, S., Waterston, R.H., Baillie, D.L. Cell (1982) [Pubmed]
  4. Periodic charge distributions in the myosin rod amino acid sequence match cross-bridge spacings in muscle. McLachlan, A.D., Karn, J. Nature (1982) [Pubmed]
  5. Identification and intracellular localization of the unc-22 gene product of Caenorhabditis elegans. Moerman, D.G., Benian, G.M., Barstead, R.J., Schriefer, L.A., Waterston, R.H. Genes Dev. (1988) [Pubmed]
  6. The LIM domain protein UNC-95 is required for the assembly of muscle attachment structures and is regulated by the RING finger protein RNF-5 in C. elegans. Broday, L., Kolotuev, I., Didier, C., Bhoumik, A., Podbilewicz, B., Ronai, Z. J. Cell Biol. (2004) [Pubmed]
  7. Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Okkema, P.G., Harrison, S.W., Plunger, V., Aryana, A., Fire, A. Genetics (1993) [Pubmed]
  8. Myosin heavy chain gene amplification as a suppressor mutation in Caenorhabditis elegans. Maruyama, I.N., Miller, D.M., Brenner, S. Mol. Gen. Genet. (1989) [Pubmed]
  9. Sequence analysis of mutations that affect the synthesis, assembly and enzymatic activity of the unc-54 myosin heavy chain of Caenorhabditis elegans. Dibb, N.J., Brown, D.M., Karn, J., Moerman, D.G., Bolten, S.L., Waterston, R.H. J. Mol. Biol. (1985) [Pubmed]
  10. Immunological identification of the genes encoding the four myosin heavy chain isoforms of Caenorhabditis elegans. Miller, D.M., Stockdale, F.E., Karn, J. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  11. A selection for myosin heavy chain mutants in the nematode Caenorhabditis elegans. Anderson, P., Brenner, S. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  12. Mutants altering coordinate synthesis of specific myosins during nematode muscle development. Zengel, J.M., Epstein, H.F. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  13. Hydrophobicity variations along the surface of the coiled-coil rod may mediate striated muscle myosin assembly in Caenorhabditis elegans. Hoppe, P.E., Waterston, R.H. J. Cell Biol. (1996) [Pubmed]
  14. The nonmuscle myosin regulatory light chain gene mlc-4 is required for cytokinesis, anterior-posterior polarity, and body morphology during Caenorhabditis elegans embryogenesis. Shelton, C.A., Carter, J.C., Ellis, G.C., Bowerman, B. J. Cell Biol. (1999) [Pubmed]
  15. Novel insertion mutation in Caenorhabditis elegans. Eide, D.J., Anderson, P. Mol. Cell. Biol. (1985) [Pubmed]
  16. Intron positions are conserved in the 5' end region of myosin heavy-chain genes. Strehler, E.E., Mahdavi, V., Periasamy, M., Nadal-Ginard, B. J. Biol. Chem. (1985) [Pubmed]
  17. The proteolytic substructure of light meromyosin. Localization of a region responsible for the low ionic strength insolubility of myosin. Nyitray, L., Mocz, G., Szilagyi, L., Balint, M., Lu, R.C., Wong, A., Gergely, J. J. Biol. Chem. (1983) [Pubmed]
  18. Mapping of the novel protein kinase catalytic domain of Dictyostelium myosin II heavy chain kinase A. Côté, G.P., Luo, X., Murphy, M.B., Egelhoff, T.T. J. Biol. Chem. (1997) [Pubmed]
  19. Reactivities of thiols in myosin rod: effect of magnesium and ionic strength. Pliszka, B., Lu, R.C. Biochim. Biophys. Acta (1985) [Pubmed]
  20. The glyceraldehyde-3-phosphate dehydrogenase gene family in the nematode, Caenorhabditis elegans: isolation and characterization of one of the genes. Yarbrough, P.O., Hayden, M.A., Dunn, L.A., Vermersch, P.S., Klass, M.R., Hecht, R.M. Biochim. Biophys. Acta (1987) [Pubmed]
  21. Protein structural domains in the Caenorhabditis elegans unc-54 myosin heavy chain gene are not separated by introns. Karn, J., Brenner, S., Barnett, L. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  22. A direct interaction between IP(3) receptors and myosin II regulates IP(3) signaling in C. elegans. Walker, D.S., Ly, S., Lockwood, K.C., Baylis, H.A. Curr. Biol. (2002) [Pubmed]
  23. Purified thick filaments from the nematode Caenorhabditis elegans: evidence for multiple proteins associated with core structures. Epstein, H.F., Berliner, G.C., Casey, D.L., Ortiz, I. J. Cell Biol. (1988) [Pubmed]
  24. Sequence analysis of the complete Caenorhabditis elegans myosin heavy chain gene family. Dibb, N.J., Maruyama, I.N., Krause, M., Karn, J. J. Mol. Biol. (1989) [Pubmed]
  25. Combinatorial structure of a body muscle-specific transcriptional enhancer in Caenorhabditis elegans. Jantsch-Plunger, V., Fire, A. J. Biol. Chem. (1994) [Pubmed]
  26. Characterization of a muscle-associated antigen from Wuchereria bancrofti. Raghavan, N., Maina, C.V., Fitzgerald, P.C., Tuan, R.S., Slatko, B.E., Ottesen, E.A., Nutman, T.B. Exp. Parasitol. (1992) [Pubmed]
  27. Second harmonic generation imaging of endogenous structural proteins. Mohler, W., Millard, A.C., Campagnola, P.J. Methods (2003) [Pubmed]
  28. Genetic analysis of myosin assembly in Caenorhabditis elegans. Epstein, H.F. Mol. Neurobiol. (1990) [Pubmed]
WikiGenes - Universities