The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

TRB@  -  T cell receptor, beta cluster

Bos taurus

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of TRB@

  • IR spectra were collected for the single-chain (beta-trypsin) and once-cleaved, double-chain (alpha-trypsin) forms as well as at various times during the course of autolysis and also for zymogen, trypsinogen, and beta-trypsin inhibited with diisopropyl fluorophosphate [1].
  • We describe here the high-level expression of bovine trypsinogen in E. coli, its refolding and activation to beta-trypsin, and the selective incorporation of (15)N-labeled alanine through supplementation of the growth medium [2].
  • For all seven protein systems considered (HIV-1 protease, dihydrodipicolinate reductase, Rnase T1, streptavidin, pp60c-Src SH2 domain, Hsp90 molecular chaperone, and bovine beta-trypsin) the binding enthalpy of 25 small molecular weight peptide and nonpeptide ligands can be accounted for with a standard error of +/-0.3 kcal x mol(-1) [3].
 

High impact information on TRB@

  • The effects of double mutations on k(a), k(lim), and k(app) were small with uPA and nonexistent with beta-trypsin [4].
  • The contribution of a covalent bond to the stability of complexes of serine proteinases with inhibitors of the serpin family was evaluated by comparing the affinities of beta-trypsin and the catalytic serine-modified derivative, beta-anhydrotrypsin, for several serpin and non-serpin (Kunitz) inhibitors [5].
  • Berenil (4,4'-diazoamino-bis-benzamidine), a parabolic competitive inhibitor of beta-trypsin, was a hyperbolic competitive inhibitor of azo-beta-trypsin [6].
  • Identification of the substrate activation site of beta-trypsin by a 1:1 reaction with p-diazoniumbenzamidine chloride was confirmed by spectral analysis [6].
  • The topology of the metal ion binding site in subunit III is predicted from sequence homologies and modeling experiments based on the known crystallographic three-dimensional structures of the equivalent sites in porcine elastase 1 and bovine beta-trypsin [7].
 

Biological context of TRB@

 

Anatomical context of TRB@

  • C1 inactivator was hydrolyzed at three different regions on the molecule whereas beta-trypsin cleaved two regions in common with leukocyte elastase [13].
 

Associations of TRB@ with chemical compounds

  • Transient removal of proflavine inhibition of bovine beta-trypsin by the bovine basic pancreatic trypsin inhibitor (Kunitz). A case for "chronosteric effects" [14].
  • Intact third domains (positions 131 to 186) isolated from the two allelic forms of ovomucoid interact with bovine beta-trypsin in a similar but not identical manner; the complex with the glycine form dissociates more rapidly [15].
  • The high-resolution X-ray structures have been determined for ten complexes formed between bovine beta-trypsin and P1 variants (Gly, Asp, Glu, Gln, Thr, Met, Lys, His, Phe, Trp) of bovine pancreatic trypsin inhibitor (BPTI) [16].
  • Arginine and lysine derivatives are equally good substrates for b. beta-trypsin; b. thrombin and h.u. kallikrein prefer substrates containing arginine side chains; h. urokinase prefers substrate containing lysine [17].
  • 1-(N-Amino-n-hexyl)carbamoylimidazole hydrochloride was synthesized and shown to be a potent irreversible inhibitor of human urokinase (EC 3.4.21.31), pig kidney-cell plasminogen activator (EC 3.4.21.-), human plasmin (EC 3.4.21.7) and bovine pancreatic beta-trypsin (EC 3.4.21.4) [18].
 

Enzymatic interactions of TRB@

  • 5. Solutions of aprotinin, modified aprotinin with the Lys15-Ala16 peptide bond cleaved and mixtures of both species were incubated with 10 mol% porcine beta-trypsin [19].
 

Other interactions of TRB@

 

Analytical, diagnostic and therapeutic context of TRB@

References

  1. Comparison of various molecular forms of bovine trypsin: correlation of infrared spectra with X-ray crystal structures. Prestrelski, S.J., Byler, D.M., Liebman, M.N. Biochemistry (1991) [Pubmed]
  2. High-level bacterial expression and 15N-alanine-labeling of bovine trypsin. Application to the study of trypsin-inhibitor complexes and trypsinogen activation by NMR spectroscopy. Peterson, F.C., Gordon, N.C., Gettins, P.G. Biochemistry (2001) [Pubmed]
  3. Structural parameterization of the binding enthalpy of small ligands. Luque, I., Freire, E. Proteins (2002) [Pubmed]
  4. The contribution of the exosite residues of plasminogen activator inhibitor-1 to proteinase inhibition. Ibarra, C.A., Blouse, G.E., Christian, T.D., Shore, J.D. J. Biol. Chem. (2004) [Pubmed]
  5. Role of the catalytic serine in the interactions of serine proteinases with protein inhibitors of the serpin family. Contribution of a covalent interaction to the binding energy of serpin-proteinase complexes. Olson, S.T., Bock, P.E., Kvassman, J., Shore, J.D., Lawrence, D.A., Ginsburg, D., Björk, I. J. Biol. Chem. (1995) [Pubmed]
  6. Tyrosine 151 is part of the substrate activation binding site of bovine trypsin. Identification by covalent labeling with p-diazoniumbenzamidine and kinetic characterization of Tyr-151-(p-benzamidino)-azo-beta-trypsin. Oliveira, M.G., Rogana, E., Rosa, J.C., Reinhold, B.B., Andrade, M.H., Greene, L.J., Mares-Guia, M. J. Biol. Chem. (1993) [Pubmed]
  7. Binding of terbium and of an elastase inhibitor to bovine pancreatic subunit III, an inactive protease E. Chapus, C., Kerfelec, B., Dimicoli, J.L. J. Biol. Chem. (1990) [Pubmed]
  8. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. Bode, W., Schwager, P. J. Mol. Biol. (1975) [Pubmed]
  9. Ligand-induced changes in the conformational stability of bovine trypsinogen and their implications for the protein function. Bulaj, G., Otlewski, J. J. Mol. Biol. (1995) [Pubmed]
  10. Role of catalytic residues in the formation of a tetrahedral adduct in the acylation reaction of bovine beta-trypsin. A molecular orbital study. Nakagawa, S., Umeyama, H. J. Mol. Biol. (1984) [Pubmed]
  11. Single peptide bond hydrolysis/resynthesis in squash inhibitors of serine proteinases. 1. Kinetics and thermodynamics of the interaction between squash inhibitors and bovine beta-trypsin. Otlewski, J., Zbyryt, T. Biochemistry (1994) [Pubmed]
  12. Alanine point-mutations in the reactive region of bovine pancreatic trypsin inhibitor: effects on the kinetics and thermodynamics of binding to beta-trypsin and alpha-chymotrypsin. Castro, M.J., Anderson, S. Biochemistry (1996) [Pubmed]
  13. Proteolytic cleavage and inactivation of alpha 2-plasmin inhibitor and C1 inactivator by human polymorphonuclear leukocyte elastase. Brower, M.S., Harpel, P.C. J. Biol. Chem. (1982) [Pubmed]
  14. Transient removal of proflavine inhibition of bovine beta-trypsin by the bovine basic pancreatic trypsin inhibitor (Kunitz). A case for "chronosteric effects". Antonini, E., Ascenzi, P., Bolognesi, M., Menegatti, E., Guarneri, M. J. Biol. Chem. (1983) [Pubmed]
  15. A Ser162/Gly162 polymorphism in Japanese quail ovomucoid. Bogard, W.C., Kato, I., Laskowski, M. J. Biol. Chem. (1980) [Pubmed]
  16. The crystal structures of the complexes between bovine beta-trypsin and ten P1 variants of BPTI. Helland, R., Otlewski, J., Sundheim, O., Dadlez, M., Smalås, A.O. J. Mol. Biol. (1999) [Pubmed]
  17. Catalytic properties of serine proteases. 2. Comparison between human urinary kallikrein and human urokinase, bovine beta-trypsin, bovine thrombin, and bovine alpha-chymotrypsin. Ascenzi, P., Menegatti, E., Guarneri, M., Bortolotti, F., Antonini, E. Biochemistry (1982) [Pubmed]
  18. The irreversible inhibition of urokinase, kidney-cell plasminogen activator, plasmin and beta-trypsin by 1-(N-6-amino-n-hexyl)carbamoylimidazole. Walker, B., Elmore, D.T. Biochem. J. (1984) [Pubmed]
  19. The pH dependence of the equilibrium constant KHyd for the hydrolysis of the Lys15-Ala16 reactive-site peptide bond in bovine pancreatic trypsin inhibitor (aprotinin). Siekmann, J., Wenzel, H.R., Matuszak, E., von Goldammer, E., Tschesche, H. J. Protein Chem. (1988) [Pubmed]
  20. Catalytic properties of human urinary kallikrein. Antonini, E., Ascenzi, P., Menegatti, E., Bortolotti, F., Guarneri, M. Biochemistry (1982) [Pubmed]
  21. Modelling of the serine-proteinase fold by X-ray and neutron scattering and sedimentation analyses: occurrence of the fold in factor D of the complement system. Perkins, S.J., Smith, K.F., Kilpatrick, J.M., Volanakis, J.E., Sim, R.B. Biochem. J. (1993) [Pubmed]
  22. The refined 2.0 A X-ray crystal structure of the complex formed between bovine beta-trypsin and CMTI-I, a trypsin inhibitor from squash seeds (Cucurbita maxima). Topological similarity of the squash seed inhibitors with the carboxypeptidase A inhibitor from potatoes. Bode, W., Greyling, H.J., Huber, R., Otlewski, J., Wilusz, T. FEBS Lett. (1989) [Pubmed]
  23. The complete amino acid sequence of bovine cathepsin S and a partial sequence of bovine cathepsin L. Ritonja, A., Colić, A., Dolenc, I., Ogrinc, T., Podobnik, M., Turk, V. FEBS Lett. (1991) [Pubmed]
  24. Binding of porcine pancreatic secretory trypsin inhibitor to bovine beta-trypsin: a kinetic study. Ascenzi, P., Amiconi, G., Bolognesi, M., Menegatti, E., Guarneri, M. Biopolymers (1986) [Pubmed]
  25. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. I. Crystallization, data collection and application of patterson search technique. Fehlhammer, H., Bode, W. J. Mol. Biol. (1975) [Pubmed]
  26. Active site titration of bovine beta-trypsin by N alpha-(N,N-dimethylcarbamoyl)-alpha-aza-lysine p-nitrophenyl ester: kinetic and crystallographic analysis. Sartori, P., Djinovic Carugo, K., Ferraccioli, R., Balliano, G., Milla, P., Ascenzi, P., Bolognesi, M. FEBS Lett. (1995) [Pubmed]
  27. Autolysis of beta-trypsin at pH 3.0. Dias, C.L., Rogana, E. Braz. J. Med. Biol. Res. (1986) [Pubmed]
  28. Urea-induced denaturation of beta-trypsin: an evidence for a molten globule state. Brumano, M.H., Oliveira, M.G. Protein Pept. Lett. (2004) [Pubmed]
 
WikiGenes - Universities