The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SPINK1  -  serine peptidase inhibitor, Kazal type 1

Bos taurus

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SPINK1


High impact information on SPINK1

  • Kinetic studies showed that the binding of 125I-PSTI to 3T3 Swiss albino cells reached the maximum level within 120 min at 4 degrees C, with a slow dissociation rate [6].
  • These results indicated that the biological effect of PSTI was mediated by high affinity plasma membrane receptors, which were not a cell-surface proteinase(s) [6].
  • Treatment of surface-bound radiolabeled PSTI with a chemical crosslinker (disuccinimidyl suberate) led to the identification of a membrane polypeptide of Mr 140,000 to which PSTI was crosslinked [6].
  • Specific binding sites for human pancreatic secretory trypsin inhibitor (PSTI) on 3T3 Swiss albino cells were studied using radioiodinated recombinant PSTI [6].
  • Various protease inhibitors had no or only a little effect, and mercaptoethanol and dithiothreitol strongly decreased the binding of 125I-PSTI [6].

Biological context of SPINK1


Anatomical context of SPINK1


Associations of SPINK1 with chemical compounds

  • Incubation at 37 degrees C resulted in rapid internalization of cell-bound 125I-PSTI, followed by the appearance of trichloroacetic acid-soluble 125I-radioactivity in the culture medium, due to degradation of internalized PSTI [6].
  • Binding of the bovine pancreatic secretory trypsin inhibitor (Kazal) to bovine serine (pro)enzymes [12].
  • Such an analysis allows to dissect the contributions due to the primary recognition subsite, where small mono-functional ligands (e.g., n-butylamine) bind, from those of the secondary subsite(s), which are additional recognition clefts for macromolecular inhibitors (e.g., BPTI and PSTI) [13].

Other interactions of SPINK1


Analytical, diagnostic and therapeutic context of SPINK1


  1. Functional analysis of recombinant pancreatic secretory trypsin inhibitor protein with amino-acid substitution. Kuwata, K., Hirota, M., Shimizu, H., Nakae, M., Nishihara, S., Takimoto, A., Mitsushima, K., Kikuchi, N., Endo, K., Inoue, M., Ogawa, M. J. Gastroenterol. (2002) [Pubmed]
  2. Production of recombinant human pancreatic secretory trypsin inhibitor by Escherichia coli. Kikuchi, N., Nagata, K., Horii, T., Miyazaki, S., Shin, M., Takimoto, N., Tsuruta, Y., Tamaki, M., Teraoka, H., Yoshida, N. J. Biochem. (1987) [Pubmed]
  3. Radioimmunoassay for human pancreatic secretory trypsin inhibitor: measurement of serum pancreatic secretory trypsin inhibitor in normal subjects and subjects with pancreatic diseases. Kitahara, T., Takatsuka, Y., Fujimoto, K.I., Tanaka, S., Ogawa, M., Kosaki, G. Clin. Chim. Acta (1980) [Pubmed]
  4. Genetic and biochemical characterization of the E32del polymorphism in human mesotrypsinogen. Nemoda, Z., Teich, N., Hugenberg, C., Sahin-Tóth, M. Pancreatology (2005) [Pubmed]
  5. Pancreatic secretory trypsin inhibitor immunoreactivity detected in serum-free culture medium of human pancreatic carcinoma cell line, CAPAN-1. Ogata, N., Murata, A. Res. Commun. Chem. Pathol. Pharmacol. (1988) [Pubmed]
  6. Identification and characterization of receptors specific for human pancreatic secretory trypsin inhibitor. Niinobu, T., Ogawa, M., Murata, A., Nishijima, J., Mori, T. J. Exp. Med. (1990) [Pubmed]
  7. pH and temperature effects on the molecular conformation of the porcine pancreatic secretory trypsin inhibitor as detected by hydrogen-1 nuclear magnetic resonance. De Marco, A., Menegatti, E., Guarneri, M. Biochemistry (1982) [Pubmed]
  8. Purification and complete amino acid sequence of canine pancreatic secretory trypsin inhibitor. Kikuchi, N., Nagata, K., Yoshida, N., Tanaka, T., Yamamoto, M., Saitoh, Y. FEBS Lett. (1985) [Pubmed]
  9. Purification and characterization of pancreatic secretory trypsin inhibitor in human gastric mucosa. Shibata, T., Ogawa, M., Matsuda, K., Miyauchi, K., Yamamoto, T., Mori, T. Clin. Chim. Acta (1986) [Pubmed]
  10. Binding of the bovine and porcine pancreatic secretory trypsin inhibitor (Kazal) to human leukocyte elastase: a thermodynamic study. Ascenzi, P., Amiconi, G., Bolognesi, M., Onesti, S., Petruzzelli, R., Menegatti, E. J. Enzym. Inhib. (1991) [Pubmed]
  11. Isolation and partial characterization of the pancreatic secretory trypsin inhibitor in the rat. Marks, W.H., Ohlsson, K. Biochim. Biophys. Acta (1982) [Pubmed]
  12. Binding of the bovine pancreatic secretory trypsin inhibitor (Kazal) to bovine serine (pro)enzymes. Menegatti, E., Guarneri, M., Bolognesi, M., Ascenzi, P., Amiconi, G. J. Mol. Biol. (1987) [Pubmed]
  13. Thermodynamic modeling of internal equilibria involved in the activation of trypsinogen. Coletta, M., Ascenzi, P., Bravin, L., Amiconi, G., Bolognesi, M., Guarneri, M., Menegatti, E. J. Biomol. Struct. Dyn. (1990) [Pubmed]
  14. Three-dimensional structure of the complexes between bovine chymotrypsinogen A and two recombinant variants of human pancreatic secretory trypsin inhibitor (Kazal-type). Hecht, H.J., Szardenings, M., Collins, J., Schomburg, D. J. Mol. Biol. (1991) [Pubmed]
  15. Binding of porcine pancreatic secretory trypsin inhibitor to bovine beta-trypsin: a kinetic study. Ascenzi, P., Amiconi, G., Bolognesi, M., Menegatti, E., Guarneri, M. Biopolymers (1986) [Pubmed]
WikiGenes - Universities