The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Carica


High impact information on Carica


Chemical compound and disease context of Carica


Biological context of Carica


Anatomical context of Carica


Associations of Carica with chemical compounds

  • Papain is a sulfhydryl protease from the latex of the papaya fruit [21].
  • Latexes of both papaya and the wild fig were rich in cysteine-protease activity [8].
  • 3. The active centre of papaya peptidase A was investigated by using 2,2'-dipyridyl disulphide and 4-chloro-7-nitrobenzofurazan as reactivity probes [22].
  • The most marked difference in the Cys/His system is that the pKa for the loss of the ion-pair state to form -S-/-Im is 8.1-8.3 for papaya proteinase omega, whereas it is 9.5 for both actinidin and papain [18].
  • Values of k+2/Ks and k+3 for the reactions of papain, actinidin and papaya peptidase II with N-benzoylglycine and N-(beta-phenylpropionyl)glycine methyl thionoesters were obtained by a pre-steady-state kinetic study [23].

Gene context of Carica


Analytical, diagnostic and therapeutic context of Carica


  1. Nucleotide sequence of the capsid protein gene and 3' non-coding region of papaya mosaic virus RNA. Abouhaidar, M.G. J. Gen. Virol. (1988) [Pubmed]
  2. Inhibition of cysteine proteinases by Carica papaya cystatin produced in Escherichia coli. Song, I., Taylor, M., Baker, K., Bateman, R.C. Gene (1995) [Pubmed]
  3. Comparative modelling of major house dust mite allergen Der p I: structure validation using an extended environmental amino acid propensity table. Topham, C.M., Srinivasan, N., Thorpe, C.J., Overington, J.P., Kalsheker, N.A. Protein Eng. (1994) [Pubmed]
  4. Papaya (Carica papaya) consumption is unsafe in pregnancy: fact or fable? Scientific evaluation of a common belief in some parts of Asia using a rat model. Adebiyi, A., Adaikan, P.G., Prasad, R.N. Br. J. Nutr. (2002) [Pubmed]
  5. Hypoglycemic action of an oral fig-leaf decoction in type-I diabetic patients. Serraclara, A., Hawkins, F., Pérez, C., Domínguez, E., Campillo, J.E., Torres, M.D. Diabetes Res. Clin. Pract. (1998) [Pubmed]
  6. Aluminum tolerance in transgenic plants by alteration of citrate synthesis. de la Fuente, J.M., Ramírez-Rodríguez, V., Cabrera-Ponce, J.L., Herrera-Estrella, L. Science (1997) [Pubmed]
  7. Crystal structure of papaya glutaminyl cyclase, an archetype for plant and bacterial glutaminyl cyclases. Wintjens, R., Belrhali, H., Clantin, B., Azarkan, M., Bompard, C., Baeyens-Volant, D., Looze, Y., Villeret, V. J. Mol. Biol. (2006) [Pubmed]
  8. Papain protects papaya trees from herbivorous insects: role of cysteine proteases in latex. Konno, K., Hirayama, C., Nakamura, M., Tateishi, K., Tamura, Y., Hattori, M., Kohno, K. Plant J. (2004) [Pubmed]
  9. Gene expression patterns associated with in vitro tracheary element formation in isolated single mesophyll cells of Zinnia elegans. Ye, Z.H., Varner, J.E. Plant Physiol. (1993) [Pubmed]
  10. Electrophoretic analysis of plant cysteine and serine proteinases using gelatin-containing polyacrylamide gels and class-specific proteinase inhibitors. Michaud, D., Faye, L., Yelle, S. Electrophoresis (1993) [Pubmed]
  11. The baculovirus Autographa californica nuclear polyhedrosis virus genome includes a papain-like sequence. Rawlings, N.D., Pearl, L.H., Buttle, D.J. Biol. Chem. Hoppe-Seyler (1992) [Pubmed]
  12. Reversible azoospermia by oral administration of the benzene chromatographic fraction of the chloroform extract of the seeds of Carica papaya in rabbits. Lohiya, N.K., Mishra, P.K., Pathak, N., Manivannan, B., Jain, S.C. Advances in contraception : the official journal of the Society for the Advancement of Contraception. (1999) [Pubmed]
  13. Characterization of chito-oligosaccharides prepared by chitosanolysis with the aid of papain and Pronase, and their bactericidal action against Bacillus cereus and Escherichia coli. Vishu Kumar, A.B., Varadaraj, M.C., Gowda, L.R., Tharanathan, R.N. Biochem. J. (2005) [Pubmed]
  14. Subsite differences between the active centres of papaya peptidase A and papain as revealed by affinity chromatography. Purification of papaya peptidase A by ionic-strength-dependent affinity adsorption on an immobilized peptide inhibitor of papain. Schack, P., Kaarsholm, N.C. Biochem. J. (1984) [Pubmed]
  15. The amino acid sequence of chymopapain from Carica papaya. Watson, D.C., Yaguchi, M., Lynn, K.R. Biochem. J. (1990) [Pubmed]
  16. Crystal structure of glycyl endopeptidase from Carica papaya: a cysteine endopeptidase of unusual substrate specificity. O'Hara, B.P., Hemmings, A.M., Buttle, D.J., Pearl, L.H. Biochemistry (1995) [Pubmed]
  17. Molecular cloning of two cysteine proteinases from paw-paw (Carica papaya). McKee, R.A., Adams, S., Matthews, J.A., Smith, C.J., Smith, H. Biochem. J. (1986) [Pubmed]
  18. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Topham, C.M., Salih, E., Frazao, C., Kowlessur, D., Overington, J.P., Thomas, M., Brocklehurst, S.M., Patel, M., Thomas, E.W., Brocklehurst, K. Biochem. J. (1991) [Pubmed]
  19. Semen quality in papaya workers with long term exposure to ethylene dibromide. Ratcliffe, J.M., Schrader, S.M., Steenland, K., Clapp, D.E., Turner, T., Hornung, R.W. British journal of industrial medicine. (1987) [Pubmed]
  20. Fungicidal activity of latex sap from Carica papaya and antifungal effect of D(+)-glucosamine on Candida albicans growth. Giordani, R., Cardenas, M.L., Moulin-Traffort, J., Régli, P. Mycoses (1996) [Pubmed]
  21. Structure of papain refined at 1.65 A resolution. Kamphuis, I.G., Kalk, K.H., Swarte, M.B., Drenth, J. J. Mol. Biol. (1984) [Pubmed]
  22. Characterization of papaya peptidase A as a cysteine proteinase of Carica papaya L. with active-centre properties that differ from those of papain by using 2,2'-dipyridyl disulphide and 4-chloro-7-nitrobenzofurazan as reactivity probes. Use of two-protonic-state electrophiles in the identification of catalytic-site thiol groups. Baines, B.S., Brocklehurst, K. Biochem. J. (1982) [Pubmed]
  23. Comparative resonance Raman spectroscopic and kinetic studies of acyl-enzymes involving papain, actinidin and papaya peptidase II. Brocklehurst, K., Carey, P.R., Lee, H.H., Salih, E., Storer, A.C. Biochem. J. (1984) [Pubmed]
  24. Heterologous expression and characterization of human glutaminyl cyclase: evidence for a disulfide bond with importance for catalytic activity. Schilling, S., Hoffmann, T., Rosche, F., Manhart, S., Wasternack, C., Demuth, H.U. Biochemistry (2002) [Pubmed]
  25. Genome characterization and taxonomy of Plantago asiatica mosaic potexvirus. Solovyev, A.G., Novikov, V.K., Merits, A., Savenkov, E.I., Zelenina, D.A., Tyulkina, L.G., Morozov SYu, n.u.l.l. J. Gen. Virol. (1994) [Pubmed]
  26. Activation and inactivation of human factor X by proteases derived from Ficus carica. Richter, G., Schwarz, H.P., Dorner, F., Turecek, P.L. Br. J. Haematol. (2002) [Pubmed]
  27. The effects of consumption of guava (psidium guajava) or papaya (carica papaya) on total antioxidant and lipid profile in normal male youth. Rahmat, A., Abu Bakar, M.F., Faezah, N., Hambali, Z. Asia Pacific journal of clinical nutrition. (2004) [Pubmed]
  28. Disulfide bond formation between the active-site thiol and one of the several free thiol groups of chymopapain. Kóródi, I., Asbóth, B., Polgár, L. Biochemistry (1986) [Pubmed]
  29. Kinetic constants for the hydrolysis of aggrecan by the papaya proteinases and their relevance for chemonucleolysis. Dekeyser, P.M., Buttle, D.J., Devreese, B., Van Beeumen, J., Demeester, J., Lauwers, A. Arch. Biochem. Biophys. (1995) [Pubmed]
  30. Factors effecting the thermostability of cysteine proteinases from Carica papaya. Sumner, I.G., Harris, G.W., Taylor, M.A., Pickersgill, R.W., Owen, A.J., Goodenough, P.W. Eur. J. Biochem. (1993) [Pubmed]
  31. Incidence of patulin in fruits and fruit juices marketed in Campinas, Brazil. de Sylos, C.M., Rodriguez-Amaya, D.B. Food additives and contaminants. (1999) [Pubmed]
WikiGenes - Universities