The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

fliI  -  flightless I

Drosophila melanogaster

Synonyms: 15, BcDNA:LD21753, CG1484, CT3691, DCA3-19, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of fliI


High impact information on fliI


Biological context of fliI


Anatomical context of fliI


Associations of fliI with chemical compounds


Regulatory relationships of fliI

  • Exchanging the flight muscle-specific exon 3 region into the embryonic isoform increased actin sliding velocity 3-fold and improved indirect flight muscle ultrastructure integrity but failed to rescue the flightless phenotype of flies expressing embryonic myosin [16].

Other interactions of fliI

  • We report here that tweety, a gene located in Drosophila flightless, has a structure similar to those of known channels and that human homologues of tweety (hTTYH1-3) are novel maxi-Cl(-) channels. hTTYH3 mRNA was found to be distributed in excitable tissues [17].
  • We have analysed the developmental defects in Drosophila embryos lacking a gelsolin-related protein encoded by the gene flightless I [18].
  • The presence of four copies of Mhc results in overabundance of the protein and a flightless phenotype [19].
  • We show that PP1beta9C corresponds to flapwing (flw), previously identified mutants of which are viable but flightless because of defects in indirect flight muscles (IFMs) [8] [20].
  • As canB2 is an essential gene and rare homozygous escapers are flightless, we further analyzed canB2 expression and function in pupae and adults [21].

Analytical, diagnostic and therapeutic context of fliI


  1. Differential epitope tagging of actin in transformed Drosophila produces distinct effects on myofibril assembly and function of the indirect flight muscle. Brault, V., Sauder, U., Reedy, M.C., Aebi, U., Schoenenberger, C.A. Mol. Biol. Cell (1999) [Pubmed]
  2. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Razzaq, A., Robinson, I.M., McMahon, H.T., Skepper, J.N., Su, Y., Zelhof, A.C., Jackson, A.P., Gay, N.J., O'Kane, C.J. Genes Dev. (2001) [Pubmed]
  3. Alternative myosin hinge regions are utilized in a tissue-specific fashion that correlates with muscle contraction speed. Collier, V.L., Kronert, W.A., O'Donnell, P.T., Edwards, K.A., Bernstein, S.I. Genes Dev. (1990) [Pubmed]
  4. Assembly of thick filaments and myofibrils occurs in the absence of the myosin head. Cripps, R.M., Suggs, J.A., Bernstein, S.I. EMBO J. (1999) [Pubmed]
  5. Alterations in flight muscle ultrastructure and function in Drosophila tropomyosin mutants. Kreuz, A.J., Simcox, A., Maughan, D. J. Cell Biol. (1996) [Pubmed]
  6. Myosin light chain-2 mutation affects flight, wing beat frequency, and indirect flight muscle contraction kinetics in Drosophila. Warmke, J., Yamakawa, M., Molloy, J., Falkenthal, S., Maughan, D. J. Cell Biol. (1992) [Pubmed]
  7. The Drosophila melanogaster flightless-I gene involved in gastrulation and muscle degeneration encodes gelsolin-like and leucine-rich repeat domains and is conserved in Caenorhabditis elegans and humans. Campbell, H.D., Schimansky, T., Claudianos, C., Ozsarac, N., Kasprzak, A.B., Cotsell, J.N., Young, I.G., de Couet, H.G., Miklos, G.L. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  8. Data transferability from model organisms to human beings: insights from the functional genomics of the flightless region of Drosophila. Maleszka, R., de Couet, H.G., Miklos, G.L. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  9. The novel flightless-I gene brings together two gene families, actin-binding proteins related to gelsolin and leucine-rich-repeat proteins involved in Ras signal transduction. Claudianos, C., Campbell, H.D. Mol. Biol. Evol. (1995) [Pubmed]
  10. Fliih, a gelsolin-related cytoskeletal regulator essential for early mammalian embryonic development. Campbell, H.D., Fountain, S., McLennan, I.S., Berven, L.A., Crouch, M.F., Davy, D.A., Hooper, J.A., Waterford, K., Chen, K.S., Lupski, J.R., Ledermann, B., Young, I.G., Matthaei, K.I. Mol. Cell. Biol. (2002) [Pubmed]
  11. Defects in the Drosophila myosin rod permit sarcomere assembly but cause flight muscle degeneration. Kronert, W.A., O'Donnell, P.T., Fieck, A., Lawn, A., Vigoreaux, J.O., Sparrow, J.C., Bernstein, S.I. J. Mol. Biol. (1995) [Pubmed]
  12. The effect of removing the N-terminal extension of the Drosophila myosin regulatory light chain upon flight ability and the contractile dynamics of indirect flight muscle. Moore, J.R., Dickinson, M.H., Vigoreaux, J.O., Maughan, D.W. Biophys. J. (2000) [Pubmed]
  13. Isolation of Drosophila flightless mutants which affect myofibrillar proteins of indirect flight muscle. Mogami, K., Hotta, Y. Mol. Gen. Genet. (1981) [Pubmed]
  14. Isolation and characterization of flightless mutants in Drosophila melanogaster. Koana, T., Hotta, Y. Journal of embryology and experimental morphology. (1978) [Pubmed]
  15. Loss of flight and associated neuronal rhythmicity in inositol 1,4,5-trisphosphate receptor mutants of Drosophila. Banerjee, S., Lee, J., Venkatesh, K., Wu, C.F., Hasan, G. J. Neurosci. (2004) [Pubmed]
  16. Variable N-terminal regions of muscle myosin heavy chain modulate ATPase rate and actin sliding velocity. Swank, D.M., Knowles, A.F., Kronert, W.A., Suggs, J.A., Morrill, G.E., Nikkhoy, M., Manipon, G.G., Bernstein, S.I. J. Biol. Chem. (2003) [Pubmed]
  17. A novel human Cl(-) channel family related to Drosophila flightless locus. Suzuki, M., Mizuno, A. J. Biol. Chem. (2004) [Pubmed]
  18. The gelsolin-related flightless I protein is required for actin distribution during cellularisation in Drosophila. Straub, K.L., Stella, M.C., Leptin, M. J. Cell. Sci. (1996) [Pubmed]
  19. Transformation of Drosophila melanogaster with the wild-type myosin heavy-chain gene: rescue of mutant phenotypes and analysis of defects caused by overexpression. Cripps, R.M., Becker, K.D., Mardahl, M., Kronert, W.A., Hodges, D., Bernstein, S.I. J. Cell Biol. (1994) [Pubmed]
  20. Protein phosphatase 1beta is required for the maintenance of muscle attachments. Raghavan, S., Williams, I., Aslam, H., Thomas, D., Szöor, B., Morgan, G., Gross, S., Turner, J., Fernandes, J., VijayRaghavan, K., Alphey, L. Curr. Biol. (2000) [Pubmed]
  21. Requirement of the calcineurin subunit gene canB2 for indirect flight muscle formation in Drosophila. Gajewski, K., Wang, J., Molkentin, J.D., Chen, E.H., Olson, E.N., Schulz, R.A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  22. The flightless Drosophila mutant raised has two distinct genetic lesions affecting accumulation of myofibrillar proteins in flight muscles. Mahaffey, J.W., Coutu, M.D., Fyrberg, E.A., Inwood, W. Cell (1985) [Pubmed]
  23. Cloning mammary cell cDNAs from 17q12-q23 using interspecific somatic cell hybrids and subtractive hybridization. Cerosaletti, K.M., Shapero, M.H., Fournier, R.E. Genomics (1995) [Pubmed]
  24. Effects of tropomyosin deficiency in flight muscle of Drosophila melanogaster. Molloy, J., Kreuz, A., Miller, R., Tansey, T., Maughan, D. Adv. Exp. Med. Biol. (1993) [Pubmed]
WikiGenes - Universities