The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Blastoderm

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Blastoderm

 

High impact information on Blastoderm

  • Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo [4].
  • Here, we use a new RNA anchoring assay in living Drosophila blastoderm embryos to show that apical anchoring of mRNA after completion of dynein transport does not depend on actin or on continuous active transport by the motor [5].
  • Dynein anchors its mRNA cargo after apical transport in the Drosophila blastoderm embryo [5].
  • By contrast, the co-repressor proteins Groucho and dCtBP, and the histone deacetylase Rpd3, do not affect establishment but instead maintain repression after the blastoderm stage [6].
  • We have elucidated the mechanism of apical localization of wingless and pair-rule transcripts in the Drosophila blastoderm embryo by directly visualizing intermediates along the entire path of transcript movement [7].
 

Biological context of Blastoderm

  • The ftz gene encodes a single 1.9 kb poly(A)+ RNA expressed exclusively from the early blastoderm to gastrula stages of embryonic development [8].
  • One of these mutants, statHJ, mapped to the same chromosomal region (92E) as does D-Stat, had an incompletely penetrant pair rule phenotype, and exhibited aberrant expression of the pair rule gene even skipped (eve) at the cellular blastoderm stage [9].
  • Non-nucleolar RNP fibril gradients covering up to 8 mum of genome are also first observed at the cellular blastoderm stage [10].
  • Here we examine the ftz pattern on blastoderm embryos derived from maternal-haploid 1182 (mh 1182) and daughterless-abo-like (dal) females which possess cell densities and sizes both above and below the wild-type levels [11].
  • This structure-activity relationship conforms with that previously observed in studies of steroid induction of ALA-synthase in avian embryo liver cells and hemoglobin synthesis in the cultured avian blastoderm [12].
 

Anatomical context of Blastoderm

  • Thus, hkb is necessary for endoderm development and its activity defines spatial limits within the blastoderm embryo in which the germ layers are established [13].
  • We find that Notch is expressed in a tissue-specific manner as early as the cellular blastoderm stage, when cells of the presumptive mesoderm clearly express less Notch than adjacent ectodermal precursors [14].
  • Furthermore, when affinity-purified anti-KLP67A antisera are used to stain blastoderm embryos, mitochondria in the region of the spindle asters are labeled [15].
  • Regulated expression of nullo is required for the formation of distinct apical and basal adherens junctions in the Drosophila blastoderm [16].
  • Germ line transformation demonstrated that these three regions are sufficient to direct the alpha 1t core promoter to begin transcribing at the stage of cellular blastoderm formation and to continue thereafter at high levels in all tissues and developmental stages [17].
 

Associations of Blastoderm with chemical compounds

 

Gene context of Blastoderm

  • At the blastoderm stage, tld RNA is expressed dorsally, similar to that described for dpp [23].
  • Here, we describe a novel Drosophila protein, Discs Lost (DLT), that plays a crucial role in the polarization of embryonic epithelia during cellular blastoderm formation [24].
  • Regulation of segment polarity genes in the Drosophila blastoderm by fushi tarazu and even skipped [25].
  • During the late cellular blastoderm stage of Drosophila embryo-genesis the segmentation genes engrailed, en, and wingless, wg, become expressed in two series of 14 stripes which will subsequently coincide with the anterior and posterior limits of each parasegment [25].
  • At early blastoderm stage, tsl protein forms a symmetrical concentration gradient at the poles on the surface of the devitellinized embryo [26].
 

Analytical, diagnostic and therapeutic context of Blastoderm

References

  1. Temporal and spatial pattern of differences in microtubule behaviour during Drosophila embryogenesis revealed by distribution of a tubulin isoform. Wolf, N., Regan, C.L., Fuller, M.T. Development (1988) [Pubmed]
  2. Development of transgenic chickens expressing enhanced green fluorescent protein. Kwon, M.S., Koo, B.C., Choi, B.R., Lee, H.T., Kim, Y.H., Ryu, W.S., Shim, H., Kim, J.H., Kim, N.H., Kim, T. Biochem. Biophys. Res. Commun. (2004) [Pubmed]
  3. Introduction of DT40 cells into chick embryos. Toba, M., Ebara, F., Furuta, H., Matsushimal, Y., Kitagawa, Y., Fujihara, N. Asian J. Androl. (2001) [Pubmed]
  4. Facilitated transport of a Dpp/Scw heterodimer by Sog/Tsg leads to robust patterning of the Drosophila blastoderm embryo. Shimmi, O., Umulis, D., Othmer, H., O'Connor, M.B. Cell (2005) [Pubmed]
  5. Dynein anchors its mRNA cargo after apical transport in the Drosophila blastoderm embryo. Delanoue, R., Davis, I. Cell (2005) [Pubmed]
  6. Distinct in vivo requirements for establishment versus maintenance of transcriptional repression. Wheeler, J.C., VanderZwan, C., Xu, X., Swantek, D., Tracey, W.D., Gergen, J.P. Nat. Genet. (2002) [Pubmed]
  7. Drosophila wingless and pair-rule transcripts localize apically by dynein-mediated transport of RNA particles. Wilkie, G.S., Davis, I. Cell (2001) [Pubmed]
  8. Cloning and transcriptional analysis of the segmentation gene fushi tarazu of Drosophila. Kuroiwa, A., Hafen, E., Gehring, W.J. Cell (1984) [Pubmed]
  9. Identification of a Stat gene that functions in Drosophila development. Yan, R., Small, S., Desplan, C., Dearolf, C.R., Darnell, J.E. Cell (1996) [Pubmed]
  10. Ultrastructural patterns of RNA synthesis during early embryogenesis of Drosophila melanogaster. McKnight, S.L., Miller, O.L. Cell (1976) [Pubmed]
  11. Independence of fushi tarazu expression with respect to cellular density in Drosophila embryos. Sullivan, W. Nature (1987) [Pubmed]
  12. The influence of steroid hormone metabolites on the in vitro development of erythroid colonies derived from human bone marrow. Urabe, A., Sassa, S., Kappas, A. J. Exp. Med. (1979) [Pubmed]
  13. Sp1/egr-like zinc-finger protein required for endoderm specification and germ-layer formation in Drosophila. Brönner, G., Chu-LaGraff, Q., Doe, C.Q., Cohen, B., Weigel, D., Taubert, H., Jäckle, H. Nature (1994) [Pubmed]
  14. Complex cellular and subcellular regulation of notch expression during embryonic and imaginal development of Drosophila: implications for notch function. Fehon, R.G., Johansen, K., Rebay, I., Artavanis-Tsakonas, S. J. Cell Biol. (1991) [Pubmed]
  15. Mitochondrial association of a plus end-directed microtubule motor expressed during mitosis in Drosophila. Pereira, A.J., Dalby, B., Stewart, R.J., Doxsey, S.J., Goldstein, L.S. J. Cell Biol. (1997) [Pubmed]
  16. Regulated expression of nullo is required for the formation of distinct apical and basal adherens junctions in the Drosophila blastoderm. Hunter, C., Wieschaus, E. J. Cell Biol. (2000) [Pubmed]
  17. Insulating DNA directs ubiquitous transcription of the Drosophila melanogaster alpha 1-tubulin gene. O'Donnell, K.H., Chen, C.T., Wensink, P.C. Mol. Cell. Biol. (1994) [Pubmed]
  18. Tyrosine phosphorylation accompanying the cellularization of the syncytial blastoderm of Drosophila. Loncar, D., Singer, S.J. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  19. Drosophila 5-HT2 serotonin receptor: coexpression with fushi-tarazu during segmentation. Colas, J.F., Launay, J.M., Kellermann, O., Rosay, P., Maroteaux, L. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  20. Integration of complex larval chemosensory organs into the adult nervous system of Drosophila. Gendre, N., Lüer, K., Friche, S., Grillenzoni, N., Ramaekers, A., Technau, G.M., Stocker, R.F. Development (2004) [Pubmed]
  21. Cell death in the avian blastoderm: resistance to stress-induced apoptosis and expression of anti-apoptotic genes. Bloom, S.E., Muscarella, D.E., Lee, M.Y., Rachlinski, M. Cell Death Differ. (1998) [Pubmed]
  22. Adhesion of malignant and nonmalignant cells to cultured embryonic substrates. de Ridder, L., Mareel, M., Vakaet, L. Cancer Res. (1975) [Pubmed]
  23. The Drosophila dorsal-ventral patterning gene tolloid is related to human bone morphogenetic protein 1. Shimell, M.J., Ferguson, E.L., Childs, S.R., O'Connor, M.B. Cell (1991) [Pubmed]
  24. Discs Lost, a novel multi-PDZ domain protein, establishes and maintains epithelial polarity. Bhat, M.A., Izaddoost, S., Lu, Y., Cho, K.O., Choi, K.W., Bellen, H.J. Cell (1999) [Pubmed]
  25. Regulation of segment polarity genes in the Drosophila blastoderm by fushi tarazu and even skipped. Ingham, P.W., Baker, N.E., Martinez-Arias, A. Nature (1988) [Pubmed]
  26. Terminal pattern elements in Drosophila embryo induced by the torso-like protein. Martin, J.R., Raibaud, A., Ollo, R. Nature (1994) [Pubmed]
  27. Embryonic expression of a Drosophila src gene: alternate forms of the protein are expressed in segmental stripes and in the nervous system. Vincent, W.S., Gregory, R.J., Wadsworth, S.C. Genes Dev. (1989) [Pubmed]
  28. Structure of the zebrafish snail1 gene and its expression in wild-type, spadetail and no tail mutant embryos. Thisse, C., Thisse, B., Schilling, T.F., Postlethwait, J.H. Development (1993) [Pubmed]
  29. Microtubules and mitotic cycle phase modulate spatiotemporal distributions of F-actin and myosin II in Drosophila syncytial blastoderm embryos. Foe, V.E., Field, C.M., Odell, G.M. Development (2000) [Pubmed]
  30. Activation of epiblast gene expression by the hypoblast layer in the prestreak chick embryo. Knezevic, V., Mackem, S. Genesis (2001) [Pubmed]
 
WikiGenes - Universities