The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

Itp-r83A  -  Inositol 1,4,5,-tris-phosphate receptor

Drosophila melanogaster

Synonyms: CG1063, DIP, DmInsP[[3R]], DmInsP[[3]]R, Dmel\CG1063, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Itp-r83A

  • Here we describe the development of a baculovirus (BV)/Sf (S. frugiperda) cell system that can be used to look at IP3R function [1].

Psychiatry related information on Itp-r83A

  • Coupled with our earlier observation that an itpr homozygous null allele dies at the second instar stage, it appears that there is a critical period for itpr gene function in second instar larvae [2].

High impact information on Itp-r83A


Biological context of Itp-r83A


Anatomical context of Itp-r83A

  • IP3 binding to its receptor (IP3R) triggers Ca(2+) release from the endoplasmic reticulum (ER) to the cytosol, whereas IP4 physiological role remains elusive [12].
  • The expressed levels of dGqalpha and itpr in the tarsus of poxn70 mutant flies were reduced compared with those of wild-type flies [13].
  • In addition, the InsP3R mRNA is abundant in the legs and thorax, which are enriched with a muscular system [8].
  • InsP3 caused a significant stimulation of Mn2+ inflow in TRPL but not in mock oocytes [14].
  • We correlated the results obtained in planar lipid bilayer experiments with measurements of InsP(3)-induced Ca(2+) fluxes in microsomes isolated from wild-type and heterozygous itpr mutants [15].

Associations of Itp-r83A with chemical compounds


Regulatory relationships of Itp-r83A

  • Drosokinin-stimulated fluid transport is also reduced in homozygous and heteroallelic itpr mutants [16].
  • In oocytes incubated in the presence of PMA (to suppress Ca2+ inflow through endogenous receptor-activated Ca2+ channels), the InsP3-induced stimulation of Ca2+ inflow through TRPL channels was more clearly evident than in oocytes incubated in the absence of PMA [14].

Other interactions of Itp-r83A


Analytical, diagnostic and therapeutic context of Itp-r83A


  1. Development of a functional assay for Ca2+ release activity of IP3R and expression of an IP3R gene fragment in the baculovirus-insect cell system. Raghu, P., Habib, S., Hasnain, S.E., Hasan, G. Gene (1997) [Pubmed]
  2. Genetic dissection of itpr gene function reveals a vital requirement in aminergic cells of Drosophila larvae. Joshi, R., Venkatesh, K., Srinivas, R., Nair, S., Hasan, G. Genetics (2004) [Pubmed]
  3. The Xenopus IP3 receptor: structure, function, and localization in oocytes and eggs. Kume, S., Muto, A., Aruga, J., Nakagawa, T., Michikawa, T., Furuichi, T., Nakade, S., Okano, H., Mikoshiba, K. Cell (1993) [Pubmed]
  4. InsP3 receptor is essential for growth and differentiation but not for vision in Drosophila. Acharya, J.K., Jalink, K., Hardy, R.W., Hartenstein, V., Zuker, C.S. Neuron (1997) [Pubmed]
  5. Microdomains bounded by endoplasmic reticulum segregate cell cycle calcium transients in syncytial Drosophila embryos. Parry, H., McDougall, A., Whitaker, M. J. Cell Biol. (2005) [Pubmed]
  6. The transient receptor potential protein (Trp), a putative store-operated Ca2+ channel essential for phosphoinositide-mediated photoreception, forms a signaling complex with NorpA, InaC and InaD. Huber, A., Sander, P., Gobert, A., Bähner, M., Hermann, R., Paulsen, R. EMBO J. (1996) [Pubmed]
  7. Interactions between the inositol 1,4,5-trisphosphate and cyclic AMP signaling pathways regulate larval molting in Drosophila. Venkatesh, K., Siddhartha, G., Joshi, R., Patel, S., Hasan, G. Genetics (2001) [Pubmed]
  8. Molecular cloning and characterization of the inositol 1,4,5-trisphosphate receptor in Drosophila melanogaster. Yoshikawa, S., Tanimura, T., Miyawaki, A., Nakamura, M., Yuzaki, M., Furuichi, T., Mikoshiba, K. J. Biol. Chem. (1992) [Pubmed]
  9. PIP2 hydrolysis and calcium release are required for cytokinesis in Drosophila spermatocytes. Wong, R., Hadjiyanni, I., Wei, H.C., Polevoy, G., McBride, R., Sem, K.P., Brill, J.A. Curr. Biol. (2005) [Pubmed]
  10. Sequencing and exon mapping of the inositol 1,4,5-trisphosphate receptor cDNA from Drosophila embryos suggests the presence of differentially regulated forms of RNA and protein. Sinha, M., Hasan, G. Gene (1999) [Pubmed]
  11. Loss of flight and associated neuronal rhythmicity in inositol 1,4,5-trisphosphate receptor mutants of Drosophila. Banerjee, S., Lee, J., Venkatesh, K., Wu, C.F., Hasan, G. J. Neurosci. (2004) [Pubmed]
  12. Control of oxidative stress resistance by IP3 kinase in Drosophila melanogaster. Monnier, V., Girardot, F., Audin, W., Tricoire, H. Free Radic. Biol. Med. (2002) [Pubmed]
  13. Inositol 1,4,5-trisphosphate transduction cascade in taste reception of the fleshfly, Boettcherisca peregrina. Koganezawa, M., Shimada, I. J. Neurobiol. (2002) [Pubmed]
  14. The role of calmodulin-binding sites in the regulation of the Drosophila TRPL cation channel expressed in Xenopus laevis oocytes by ca2+, inositol 1,4,5-trisphosphate and GTP-binding proteins. Lan, L., Brereton, H., Barritt, G.J. Biochem. J. (1998) [Pubmed]
  15. Functional properties of the Drosophila melanogaster inositol 1,4,5-trisphosphate receptor mutants. Srikanth, S., Wang, Z., Tu, H., Nair, S., Mathew, M.K., Hasan, G., Bezprozvanny, I. Biophys. J. (2004) [Pubmed]
  16. NorpA and itpr mutants reveal roles for phospholipase C and inositol (1,4,5)- trisphosphate receptor in Drosophila melanogaster renal function. Pollock, V.P., Radford, J.C., Pyne, S., Hasan, G., Dow, J.A., Davies, S.A. J. Exp. Biol. (2003) [Pubmed]
  17. The inositol 1,4,5-trisphosphate receptors. Bezprozvanny, I. Cell Calcium (2005) [Pubmed]
  18. Functional characterization of thapsigargin and agonist-insensitive acidic Ca2+ stores in Drosophila melanogaster S2 cell lines. Yagodin, S., Pivovarova, N.B., Andrews, S.B., Sattelle, D.B. Cell Calcium (1999) [Pubmed]
  19. Compensation of inositol 1,4,5-trisphosphate receptor function by altering sarco-endoplasmic reticulum calcium ATPase activity in the Drosophila flight circuit. Banerjee, S., Joshi, R., Venkiteswaran, G., Agrawal, N., Srikanth, S., Alam, F., Hasan, G. J. Neurosci. (2006) [Pubmed]
  20. Inositol phosphate metabolomics: merging genetic perturbation with modernized radiolabeling methods. Stevenson-Paulik, J., Chiou, S.T., Frederick, J.P., dela Cruz, J., Seeds, A.M., Otto, J.C., York, J.D. Methods (2006) [Pubmed]
WikiGenes - Universities