The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

brm  -  brahma

Drosophila melanogaster

Synonyms: ATP-dependent helicase brm, BRM, Brm, Brm @ Kto, CG18438, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of brm

  • Thus, homozygous BRM loss of function mutants are viable but exhibit numerous defects including dwarfism, altered leaf and root development and several reproduction defects [1].
 

High impact information on brm

 

Biological context of brm

  • We first screened for dominant mutations that are lethal in combination with a brm(K804R) transgene under control of the brm promoter [6].
  • Allele-specific genetic interactions between snr1(E1) and mutations in genes encoding other members of the Brm complex suggest that snr1(E1) mutant phenotypes result from reduced Brm complex function [7].
  • Genetic screens for enhancers of brahma reveal functional interactions between the BRM chromatin-remodeling complex and the delta-notch signal transduction pathway in Drosophila [6].
  • A widespread distribution of SNR1 and BRM on the salivary gland polytene chromosomes showed that the Brm complex associated with many genes, but not always at transcribed loci, consistent with genetic data suggesting roles in both gene activation and repression [8].
  • Among the trithorax group proteins characterized, the BRAHMA protein appears to be a subunit of a protein complex conserved from yeast to man (the SNF/SWI complex) that modifies chromatin to facilitate the transcriptional activation by gene-specific DNA-binding proteins [9].
 

Anatomical context of brm

 

Associations of brm with chemical compounds

 

Physical interactions of brm

 

Regulatory relationships of brm

  • Despite essential Brm complex functions in leg development, genetic and protein localization studies revealed that snr1 was not required or expressed in all tissues dependent on Brm complex activities [8].
  • Furthermore, heterozygosity for BAP111 enhanced the phenotypes resulting from a partial loss of brm function [16].
 

Other interactions of brm

  • The trithorax group gene moira encodes a brahma-associated putative chromatin-remodeling factor in Drosophila melanogaster [17].
  • To identify direct regulatory targets of the Brm complex, we performed oligonucleotide-based transcriptome microarray analyses using RNA isolated from mutant fly strains harboring dominant-negative alleles of snr1 and brm [18].
  • Because it is not required for Zeste to bind to chromatin, the BRM complex appears to act after promoter binding by the activator [3].
  • These findings suggest that BRM plays a role in chromatin remodeling that is distinct from the function of most other trithorax group proteins [19].
  • Hormone-response Genes Are Direct in Vivo Regulatory Targets of Brahma (SWI/SNF) Complex Function [18].
 

Analytical, diagnostic and therapeutic context of brm

References

  1. The putative SWI/SNF complex subunit BRAHMA activates flower homeotic genes in Arabidopsis thaliana. Hurtado, L., Farrona, S., Reyes, J.C. Plant Mol. Biol. (2006) [Pubmed]
  2. brahma: a regulator of Drosophila homeotic genes structurally related to the yeast transcriptional activator SNF2/SWI2. Tamkun, J.W., Deuring, R., Scott, M.P., Kissinger, M., Pattatucci, A.M., Kaufman, T.C., Kennison, J.A. Cell (1992) [Pubmed]
  3. The Drosophila brahma complex is an essential coactivator for the trithorax group protein zeste. Kal, A.J., Mahmoudi, T., Zak, N.B., Verrijzer, C.P. Genes Dev. (2000) [Pubmed]
  4. Osa-containing Brahma chromatin remodeling complexes are required for the repression of wingless target genes. Collins, R.T., Treisman, J.E. Genes Dev. (2000) [Pubmed]
  5. Two-step synergism between the progesterone receptor and the DNA-binding domain of nuclear factor 1 on MMTV minichromosomes. Di Croce, L., Koop, R., Venditti, P., Westphal, H.M., Nightingale, K.P., Corona, D.F., Becker, P.B., Beato, M. Mol. Cell (1999) [Pubmed]
  6. Genetic screens for enhancers of brahma reveal functional interactions between the BRM chromatin-remodeling complex and the delta-notch signal transduction pathway in Drosophila. Armstrong, J.A., Sperling, A.S., Deuring, R., Manning, L., Moseley, S.L., Papoulas, O., Piatek, C.I., Doe, C.Q., Tamkun, J.W. Genetics (2005) [Pubmed]
  7. The Drosophila SNR1 (SNF5/INI1) subunit directs essential developmental functions of the Brahma chromatin remodeling complex. Marenda, D.R., Zraly, C.B., Feng, Y., Egan, S., Dingwall, A.K. Mol. Cell. Biol. (2003) [Pubmed]
  8. SNR1 is an essential subunit in a subset of Drosophila brm complexes, targeting specific functions during development. Zraly, C.B., Marenda, D.R., Nanchal, R., Cavalli, G., Muchardt, C., Dingwall, A.K. Dev. Biol. (2003) [Pubmed]
  9. The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Kennison, J.A. Annu. Rev. Genet. (1995) [Pubmed]
  10. Genetic analysis of brahma: the Drosophila homolog of the yeast chromatin remodeling factor SWI2/SNF2. Elfring, L.K., Daniel, C., Papoulas, O., Deuring, R., Sarte, M., Moseley, S., Beek, S.J., Waldrip, W.R., Daubresse, G., DePace, A., Kennison, J.A., Tamkun, J.W. Genetics (1998) [Pubmed]
  11. The proto-oncoprotein SYT interacts with SYT-interacting protein/co-activator activator (SIP/CoAA), a human nuclear receptor co-activator with similarity to EWS and TLS/FUS family of proteins. Perani, M., Antonson, P., Hamoudi, R., Ingram, C.J., Cooper, C.S., Garrett, M.D., Goodwin, G.H. J. Biol. Chem. (2005) [Pubmed]
  12. The trithorax group gene osa encodes an ARID-domain protein that genetically interacts with the brahma chromatin-remodeling factor to regulate transcription. Vázquez, M., Moore, L., Kennison, J.A. Development (1999) [Pubmed]
  13. Drosophila cyclin E interacts with components of the Brahma complex. Brumby, A.M., Zraly, C.B., Horsfield, J.A., Secombe, J., Saint, R., Dingwall, A.K., Richardson, H. EMBO J. (2002) [Pubmed]
  14. SNR1 (INI1/SNF5) mediates important cell growth functions of the Drosophila Brahma (SWI/SNF) chromatin remodeling complex. Zraly, C.B., Marenda, D.R., Dingwall, A.K. Genetics (2004) [Pubmed]
  15. High mobility group proteins HMGD and HMGZ interact genetically with the Brahma chromatin remodeling complex in Drosophila. Ragab, A., Thompson, E.C., Travers, A.A. Genetics (2006) [Pubmed]
  16. The HMG-domain protein BAP111 is important for the function of the BRM chromatin-remodeling complex in vivo. Papoulas, O., Daubresse, G., Armstrong, J.A., Jin, J., Scott, M.P., Tamkun, J.W. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  17. The trithorax group gene moira encodes a brahma-associated putative chromatin-remodeling factor in Drosophila melanogaster. Crosby, M.A., Miller, C., Alon, T., Watson, K.L., Verrijzer, C.P., Goldman-Levi, R., Zak, N.B. Mol. Cell. Biol. (1999) [Pubmed]
  18. Hormone-response Genes Are Direct in Vivo Regulatory Targets of Brahma (SWI/SNF) Complex Function. Zraly, C.B., Middleton, F.A., Dingwall, A.K. J. Biol. Chem. (2006) [Pubmed]
  19. The Drosophila trithorax group proteins BRM, ASH1 and ASH2 are subunits of distinct protein complexes. Papoulas, O., Beek, S.J., Moseley, S.L., McCallum, C.M., Sarte, M., Shearn, A., Tamkun, J.W. Development (1998) [Pubmed]
 
WikiGenes - Universities