The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

gltA  -  type II citrate synthase

Escherichia coli UTI89

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of gltA

 

High impact information on gltA

 

Chemical compound and disease context of gltA

 

Biological context of gltA

  • Nevertheless, B. lactofermentum-modified replicative plasmid DNA can be transformed by electroporation into C. melassecola; thus pCGL519-2, a shuttle plasmid that carries the C. melassecola analogue of E. coli gltA (encoding citrate synthase), was extracted from the former host and electroporated into the latter [11].
  • The molecular analysis of the resulting transformants suggests that they result from the integration of a single circular integron molecule by homologous recombination between the gltA regions of the host genome and the integron [11].
  • These findings indicate that the regulation of gltA gene expression is complex in meeting the differential needs of the cell for biosynthesis and energy generation under various cell culture conditions [8].
  • Knocking out ppc or gltA decreased the maximum cell density by 14% and increased the acetate excretion by 7%, respectively decreased it by 10% [12].
  • The nucleotide sequence of this fragment is presented; the inferred amino acid sequence was 70 and 76% identical, respectively, with the citrate synthase sequences from E. coli and Acinetobacter anitratum, two other gram-negative bacteria [13].
 

Associations of gltA with chemical compounds

 

Analytical, diagnostic and therapeutic context of gltA

References

  1. Identification of tlc and gltA mRNAs and determination of in situ RNA half-life in Rickettsia prowazekii. Cai, J., Winkler, H.H. J. Bacteriol. (1993) [Pubmed]
  2. Occurrence and expression of tricarboxylate synthases in Ralstonia eutropha. Ewering, C., Brämer, C.O., Bruland, N., Bethke, A., Steinbüchel, A. Appl. Microbiol. Biotechnol. (2006) [Pubmed]
  3. icdB mutants of Escherichia coli. Helling, R.B. J. Bacteriol. (1995) [Pubmed]
  4. Identification of two prpDBC gene clusters in Corynebacterium glutamicum and their involvement in propionate degradation via the 2-methylcitrate cycle. Claes, W.A., Pühler, A., Kalinowski, J. J. Bacteriol. (2002) [Pubmed]
  5. [13C]propionate oxidation in wild-type and citrate synthase mutant Escherichia coli: evidence for multiple pathways of propionate utilization. Evans, C.T., Sumegi, B., Srere, P.A., Sherry, A.D., Malloy, C.R. Biochem. J. (1993) [Pubmed]
  6. Conversion of citrate synthase into citryl-CoA lyase as a result of mutation of the active-site aspartic acid residue to glutamic acid. Man, W.J., Li, Y., O'Connor, C.D., Wilton, D.C. Biochem. J. (1991) [Pubmed]
  7. Alterations of Cellular Physiology in Escherichia coli in Response to Oxidative Phosphorylation Impaired by Defective F1-ATPase. Noda, S., Takezawa, Y., Mizutani, T., Asakura, T., Nishiumi, E., Onoe, K., Wada, M., Tomita, F., Matsushita, K., Yokota, A. J. Bacteriol. (2006) [Pubmed]
  8. Regulation of the citrate synthase (gltA) gene of Escherichia coli in response to anaerobiosis and carbon supply: role of the arcA gene product. Park, S.J., McCabe, J., Turna, J., Gunsalus, R.P. J. Bacteriol. (1994) [Pubmed]
  9. Large-scale production of citrate synthase from a cloned gene. Duckworth, H.W., Bell, A.W. Can. J. Biochem. (1982) [Pubmed]
  10. A comparison of the citrate synthases of Escherichia coli and Acinetobacter anitratum. Morse, D., Duckworth, H.W. Can. J. Biochem. (1980) [Pubmed]
  11. 'Integron'-bearing vectors: a method suitable for stable chromosomal integration in highly restrictive corynebacteria. Reyes, O., Guyonvarch, A., Bonamy, C., Salti, V., David, F., Leblon, G. Gene (1991) [Pubmed]
  12. Metabolic characterisation of E. coli citrate synthase and phosphoenolpyruvate carboxylase mutants in aerobic cultures. De Maeseneire, S.L., De Mey, M., Vandedrinck, S., Vandamme, E.J. Biotechnol. Lett. (2006) [Pubmed]
  13. Cloning, sequencing, and expression of the gene for NADH-sensitive citrate synthase of Pseudomonas aeruginosa. Donald, L.J., Molgat, G.F., Duckworth, H.W. J. Bacteriol. (1989) [Pubmed]
  14. A high-throughput screening assay for the carboxyltransferase subunit of acetyl-CoA carboxylase. Santoro, N., Brtva, T., Roest, S.V., Siegel, K., Waldrop, G.L. Anal. Biochem. (2006) [Pubmed]
  15. Gene cloning, sequencing and enzymatic properties of glutamate synthase from the hyperthermophilic archaeon Pyrococcus sp. KOD1. Jongsareejit, B., Rahman, R.N., Fujiwara, S., Imanaka, T. Mol. Gen. Genet. (1997) [Pubmed]
 
WikiGenes - Universities