The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

DTNB     5-(3-carboxy-4-nitro- phenyl)disulfanyl-2...

Synonyms: CHEMBL395814, ACMC-1AV9A, AG-G-65859, AG-G-72264, AG-J-58182, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Dithionitrobenzoic acid

 

High impact information on Dithionitrobenzoic acid

  • Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin [6].
  • Isolation and chemical analysis of the DTNB-treated GIF derivative revealed that binding the 5-thio-2-nitrobenzoic acid group with Cys-60 was responsible for the generation of the highly bioactive derivative [7].
  • Plasma-mediated association of E2 and subsequent antioxidant protection was inhibited by 5,5'-dithiobis(2-nitrobenzoic acid), an inhibitor of plasma acyltransferase activity [8].
  • Apparent Km values for DTNB, Escherichia coli Trx, and rat Trx were 116, 34, and 3.7 microM, respectively [9].
  • The classical inhibitor of LCAT activity, 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB), which strongly (89%) inhibited the native enzyme, had partial (45%) inhibitory activity with mutant enzyme species containing a single -SH residue, while the double mutant was not significantly inhibited by DTNB [10].
 

Chemical compound and disease context of Dithionitrobenzoic acid

 

Biological context of Dithionitrobenzoic acid

  • These data are interpreted to suggest that Cys-31 and Cys-184 are vicinal both to each other and to the "interfacial binding site" at residues 177-182, and that DTNB exerts its effect by steric inhibition [10].
  • Catalytic subunit inactivated by 5,5'-dithiobis(2-nitrobenzoic acid) is without effect, indicating that the increase in net outward current results from protein phosphorylation rather than an unspecific effect of protein perfusion [16].
  • Ethacrynic acid added to muscle strips exposed to DTT resulted in alkylation of sulfhydryl groups produced by reduction of disulfide bonds and irreversibly prevented DTNB-induced reversal of DTT inhibition of contractile responses to prostaglandins [17].
  • The reaction with DTNB followed second order kinetics with respect to DTNB, the rate constants being 3.37 s-1 M-1 and 1.82 s-1 M-1 in the presence and absence of Ca2+, respectively [18].
  • Spectrophotometric measurement of the hydrolysis of the ester in the presence of 5,5'-dithiobis(2-nitrobenzoic acid) provides a continuous assay for chymotrypsin as sensitive as any assay reported in the literature [19].
 

Anatomical context of Dithionitrobenzoic acid

 

Associations of Dithionitrobenzoic acid with other chemical compounds

 

Gene context of Dithionitrobenzoic acid

  • Labeling of free SH groups with tritiated NEM after preincubation of cells with DTNB and VIP made possible the characterization of reacting SH groups which probably belong to the receptor [30].
  • Both the membrane-permeable thiol-group oxidizing agent DTNP [2,2'-dithiobis-(5-nitropyridine)] and the membrane-impermeable DTNB [5,5'-Dithiobis-(2-nitrobenzoic acid)] (50 microM) inhibited Kv1.3 channels, suggesting that extracellular domains of Kv1.3 are affected [31].
  • During pH titration and DTNB reaction, MT-4 and MT-1 exhibit comparable behavior [32].
  • The protein sequence derived from translation of the cDNA sequence shows a high degree of homology with that for the DTNB myosin light chain (MLC-2) of chicken [33].
  • Carboxypeptidase Y treatment of bovine thioredoxin reductase after reduction by NADPH released selenocysteine from the enzyme with a concomitant loss of enzyme activity measured as reduction of thioredoxin or 5,5'-dithiobis(2-nitrobenzoic acid) [34].
 

Analytical, diagnostic and therapeutic context of Dithionitrobenzoic acid

References

  1. Redox modulation of T-type calcium channels in rat peripheral nociceptors. Todorovic, S.M., Jevtovic-Todorovic, V., Meyenburg, A., Mennerick, S., Perez-Reyes, E., Romano, C., Olney, J.W., Zorumski, C.F. Neuron (2001) [Pubmed]
  2. Plasma lipoproteins after triglyceride clearance in cholesterol-fed rats. Quarfordt, S.H., Oswald, B.S., Farouk, M.O., Wehrenberg, D.C., Morton, E.B., Landis, B.A. J. Clin. Invest. (1993) [Pubmed]
  3. Thioredoxin, glutaredoxin, and thioredoxin reductase from cultured HeLa cells. Tsang, M.L., Weatherbee, J.A. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  4. Sindbis virus membrane fusion is mediated by reduction of glycoprotein disulfide bridges at the cell surface. Abell, B.A., Brown, D.T. J. Virol. (1993) [Pubmed]
  5. Differential regulation of the slow and rapid components of guinea-pig cardiac delayed rectifier K+ channels by hypoxia. Hool, L.C. J. Physiol. (Lond.) (2004) [Pubmed]
  6. Homology of myosin DTNB light chain with alkali light chains, troponin C and parvalbumin. Collins, J.H. Nature (1976) [Pubmed]
  7. Conversion of inactive glycosylation inhibiting factor to bioactive derivatives by modification of a SH group. Nakano, T., Watarai, H., Liu, Y.C., Oyama, Y., Mikayama, T., Ishizaka, K. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  8. Antioxidant protection of LDL by physiological concentrations of 17 beta-estradiol. Requirement for estradiol modification. Shwaery, G.T., Vita, J.A., Keaney, J.F. Circulation (1997) [Pubmed]
  9. A new selenoprotein from human lung adenocarcinoma cells: purification, properties, and thioredoxin reductase activity. Tamura, T., Stadtman, T.C. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  10. Effects of site-directed mutagenesis at residues cysteine-31 and cysteine-184 on lecithin-cholesterol acyltransferase activity. Francone, O.L., Fielding, C.J. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  11. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli. Character of required thiol group and structure of thiol peptides. Kuehl, G.V., Lee, M.L., Muench, K.H. J. Biol. Chem. (1976) [Pubmed]
  12. Inactivation of Escherichia coli glycerol kinase by 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites. Pettigrew, D.W. Biochemistry (1986) [Pubmed]
  13. Histidine decarboxylase of Lactobacillus 30a: function and reactivity of sulfhydryl groups. Lane, R.S., Snell, E.E. Biochemistry (1976) [Pubmed]
  14. The 58 kDa mouse selenoprotein is a BCNU-sensitive thioredoxin reductase. Gromer, S., Schirmer, R.H., Becker, K. FEBS Lett. (1997) [Pubmed]
  15. Sulfhydryl oxidation reduces hippocampal susceptibility to hypoxia-induced spreading depression by activating BK channels. Hepp, S., Gerich, F.J., Müller, M. J. Neurophysiol. (2005) [Pubmed]
  16. Ca2+ -activated K+ conductance in internally perfused snail neurons is enhanced by protein phosphorylation. de Peyer, J.E., Cachelin, A.B., Levitan, I.B., Reuter, H. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  17. Studies on the nature of a prostaglandin receptor in canine and rabbit vascular smooth muscle. Greenberg, S., Kadowitz, P.J., Long, J.P., Wilson, W.R. Circ. Res. (1976) [Pubmed]
  18. The reactivity of sulfhydryl groups of bovine cardiac troponin C. Fuchs, F., Liou, Y.M., Grabarek, Z. J. Biol. Chem. (1989) [Pubmed]
  19. Use of N-benzoyl-L-tyrosine thiobenzyl ester as a protease substrate. Hydrolysis by alpha-chymotrypsin and subtilisin BPN. Farmer, D.A., Hageman, J.H. J. Biol. Chem. (1975) [Pubmed]
  20. Selective carnitine palmitoyltransferase deficiency in fibroblasts from a patient with muscle CPT deficiency. Pula, T.P., Max, S.R., Zielke, H.R., Chacon, M., Baab, P., Gumbinas, M., Reed, W.D. Ann. Neurol. (1981) [Pubmed]
  21. Amino acid sequence of the calcium-binding light chain of myosin from the lower eukaryote, Physarum polycephalum. Kobayashi, T., Takagi, T., Konishi, K., Hamada, Y., Kawaguchi, M., Kohama, K. J. Biol. Chem. (1988) [Pubmed]
  22. The hormone-responsive NADH oxidase of the plant plasma membrane has properties of a NADH:protein disulfide reductase. Chueh, P.J., Morré, D.M., Penel, C., DeHahn, T., Morré, D.J. J. Biol. Chem. (1997) [Pubmed]
  23. Disulfide cross-linking of caldesmon to actin. Graceffa, P., Jancsó, A. J. Biol. Chem. (1991) [Pubmed]
  24. Function of sulfhydryl groups in ribosome-elongation factor G reactions. Assignment of guanine nucleotide binding site to elongation factor G. Marsh, R.C., Chinali, G., Parmeggiani, A. J. Biol. Chem. (1975) [Pubmed]
  25. The role of individual cysteine residues in the activity of Escherichia coli RNase T. Li, Z., Zhan, L., Deutscher, M.P. J. Biol. Chem. (1996) [Pubmed]
  26. Interactions of nitroaromatic compounds with the mammalian selenoprotein thioredoxin reductase and the relation to induction of apoptosis in human cancer cells. Cenas, N., Prast, S., Nivinskas, H., Sarlauskas, J., Arnér, E.S. J. Biol. Chem. (2006) [Pubmed]
  27. Structural basis of hematopoietic prostaglandin D synthase activity elucidated by site-directed mutagenesis. Pinzar, E., Miyano, M., Kanaoka, Y., Urade, Y., Hayaishi, O. J. Biol. Chem. (2000) [Pubmed]
  28. Acetylation of 13-sophorosyloxydocosanoic acid by an acetyltransferase purified from Candida bogoriensis. Bucholtz, M.L., Light, R.J. J. Biol. Chem. (1976) [Pubmed]
  29. Esterification of cholesterol in high density lipoprotein decreases its ability to support ACTH-stimulated steroidogenesis by rat adrenocortical cells. Gwynne, J.T., Mahaffee, D.D. J. Biol. Chem. (1987) [Pubmed]
  30. Modifications of the binding properties of the human VIP receptor of IGR39 cells by sulfhydryl reagents. Fouchier, F., Forget, P., Pic, P., Marvaldi, J., Pichon, J. Eur. J. Cell Biol. (1992) [Pubmed]
  31. Inhibitory effects of oxidants on n-type K+ channels in T lymphocytes and Xenopus oocytes. Szabó, I., Nilius, B., Zhang, X., Busch, A.E., Gulbins, E., Suessbrich, H., Lang, F. Pflugers Arch. (1997) [Pubmed]
  32. The properties of the metal-thiolate clusters in recombinant mouse metallothionein-4. Cai, B., Zheng, Q., Huang, Z.X. Protein J. (2005) [Pubmed]
  33. Characterization of the myosin light-chain-2 gene of Drosophila melanogaster. Parker, V.P., Falkenthal, S., Davidson, N. Mol. Cell. Biol. (1985) [Pubmed]
  34. Rat and calf thioredoxin reductase are homologous to glutathione reductase with a carboxyl-terminal elongation containing a conserved catalytically active penultimate selenocysteine residue. Zhong, L., Arn-er, E.S., Ljung, J., Aslund, F., Holmgren, A. J. Biol. Chem. (1998) [Pubmed]
  35. Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl-CoA reductase. Characterization and chemical modification. Jordan-Starck, T.C., Rodwell, V.W. J. Biol. Chem. (1989) [Pubmed]
  36. Thiol-disulfide exchange of ribonuclease inhibitor bound to ribonuclease A. Evidence of active inhibitor-bound ribonuclease. Ferreras, M., Gavilanes, J.G., López-Otín, C., García-Segura, J.M. J. Biol. Chem. (1995) [Pubmed]
  37. The effects of anions on fumarate reductase isolated from the cytoplasmic membrane of Escherichia coli. Robinson, J.J., Weiner, J.H. Biochem. J. (1981) [Pubmed]
  38. Identification of a peroxide-sensitive redox switch at the CXXC motif in the human mitochondrial branched chain aminotransferase. Conway, M.E., Yennawar, N., Wallin, R., Poole, L.B., Hutson, S.M. Biochemistry (2002) [Pubmed]
  39. 5,5'-Dithiobis(2-nitrobenzoic acid) does not influence isolation or lipid composition of lipoproteins obtained by ultracentrifugation. Tallet, F., Coulhon, M.P., Yonger, J., Agneray, J., Raichvarg, D. Clin. Chem. (1984) [Pubmed]
 
WikiGenes - Universities