The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

ATPgammaS     tetralithium(2R,3R,4S,5R)-2- (6-aminopurin...

Synonyms: ATP-beta-S, ATP-gamma-S, AC1NSKGK, ATP-|A-S, A1388_SIGMA, ...
This record was replaced with 440317.
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Adenosine 5'-[gamma-S]triphosphate

  • To define the physical basis of RecQ enzyme function, we have determined a 1.8 A resolution crystal structure of the catalytic core of Escherichia coli RecQ in its unbound form and a 2.5 A resolution structure of the core bound to the ATP analog ATPgammaS [1].
  • Consistent with these effects, ATPgammaS promotes phosphorylation of tyrosine receptor kinase A, early response kinase 1/2, and p38, thereby enhancing sensitivity to nerve growth factor and accelerating neurite formation in both PC12 cells and dorsal root ganglion neurons [2].
  • Similar results were obtained when ATP was substituted for ATPgammaS at 6 degrees C. Two additional peptides, derived from the phage P1 RepA protein and the E. coli HemA protein, which bear different substrate motifs, were competitive inhibitors of SsrA binding and bound to ClpA hexamers with K(A)' > 3 x 10(7) m(-1) [3].
  • In this study we report that intradermal administration of ATPgammaS, a hydrolysis-resistant P2 agonist, results in an enhanced contact hypersensitivity response in mice [4].
  • Furthermore, ATPgammaS enhanced the induction of delayed-type hypersensitivity to a model tumor vaccine in mice and enhanced the Ag-presenting function of Langerhans cells (LCs) in vitro [4].
 

High impact information on Adenosine 5'-[gamma-S]triphosphate

  • Lesion bypass by pol V does not require beta,gamma-complex in the presence of non-hydrolysable ATPgammaS, indicating that an intact RecA filament may be required for translesion synthesis [5].
  • Although degradation of globular proteins requires ATP hydrolysis, the PAN-20S complex with ATPgammaS translocates and degrades unfolded and denatured proteins [6].
  • Treatments that prevented release of Ca2+ from intracellular stores or activation of PKA blocked ATPgammaS-stimulated changes in capacitance [7].
  • Here, we show that GluR2, PICK1, NSF, and alpha-/beta-SNAPs form a complex in the presence of ATPgammaS [8].
  • We report here the X-ray crystal structures of the conserved N-terminal 40 kDa fragment of hPMS2, NhPMS2, and its complexes with ATPgammaS and ADP at 1.95, 2.7 and 2.7 A resolution, respectively [9].
 

Chemical compound and disease context of Adenosine 5'-[gamma-S]triphosphate

 

Biological context of Adenosine 5'-[gamma-S]triphosphate

 

Anatomical context of Adenosine 5'-[gamma-S]triphosphate

 

Associations of Adenosine 5'-[gamma-S]triphosphate with other chemical compounds

 

Gene context of Adenosine 5'-[gamma-S]triphosphate

 

Analytical, diagnostic and therapeutic context of Adenosine 5'-[gamma-S]triphosphate

  • Internal perfusion of cells with a pipette solution containing ATPgammaS was used to prevent reversibility of phosphorylation-dependent processes [30].
  • Forces developed in response to Ca(2+) (6.6 microm), Ca(2+) (0.2 microm) + GTPgammaS (1 mM), or in the absence of Ca(2+) after treatment with ATPgammaS (1 mM), were of similar magnitude [31].
  • In subsequent experiments in rats maintained on a low-sodium diet, we used more selective agonists in an attempt to identify the receptor subtype responsible for the effect of ATPgammaS [32].
  • To gain insight into the functional architecture of ClpA in the ATPgammaS state, we have determined its structure at 12A resolution by cryo-electron microscopy [33].
  • ATPgammaS-induced proliferation was demonstrated by three separate methods, detection by scintillation counting of [3H]thymidine incorporation, immunocytochemical detection of 5-bromo-2-deoxyuridine incorporation and direct counting of cell numbers [34].

References

  1. High-resolution structure of the E.coli RecQ helicase catalytic core. Bernstein, D.A., Zittel, M.C., Keck, J.L. EMBO J. (2003) [Pubmed]
  2. P2Y2 receptor activates nerve growth factor/TrkA signaling to enhance neuronal differentiation. Arthur, D.B., Akassoglou, K., Insel, P.A. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  3. The molecular chaperone, ClpA, has a single high affinity peptide binding site per hexamer. Piszczek, G., Rozycki, J., Singh, S.K., Ginsburg, A., Maurizi, M.R. J. Biol. Chem. (2005) [Pubmed]
  4. Augmentation of cutaneous immune responses by ATP gamma S: purinergic agonists define a novel class of immunologic adjuvants. Granstein, R.D., Ding, W., Huang, J., Holzer, A., Gallo, R.L., Di Nardo, A., Wagner, J.A. J. Immunol. (2005) [Pubmed]
  5. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis. Tang, M., Pham, P., Shen, X., Taylor, J.S., O'Donnell, M., Woodgate, R., Goodman, M.F. Nature (2000) [Pubmed]
  6. ATP binding to PAN or the 26S ATPases causes association with the 20S proteasome, gate opening, and translocation of unfolded proteins. Smith, D.M., Kafri, G., Cheng, Y., Ng, D., Walz, T., Goldberg, A.L. Mol. Cell (2005) [Pubmed]
  7. ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. Wang, E.C., Lee, J.M., Ruiz, W.G., Balestreire, E.M., von Bodungen, M., Barrick, S., Cockayne, D.A., Birder, L.A., Apodaca, G. J. Clin. Invest. (2005) [Pubmed]
  8. NSF ATPase and alpha-/beta-SNAPs disassemble the AMPA receptor-PICK1 complex. Hanley, J.G., Khatri, L., Hanson, P.I., Ziff, E.B. Neuron (2002) [Pubmed]
  9. Structure and function of the N-terminal 40 kDa fragment of human PMS2: a monomeric GHL ATPase. Guarné, A., Junop, M.S., Yang, W. EMBO J. (2001) [Pubmed]
  10. Initiation of DNA replication at palindromic telomeres is mediated by a duplex-to-hairpin transition induced by the minute virus of mice nonstructural protein NS1. Willwand, K., Mumtsidu, E., Kuntz-Simon, G., Rommelaere, J. J. Biol. Chem. (1998) [Pubmed]
  11. Differences in the neurotoxicity profile induced by ATP and ATPgammaS in cultured cerebellar granule neurons. Amadio, S., D'Ambrosi, N., Trincavelli, M.L., Tuscano, D., Sancesario, G., Bernadi, G., Martini, C., Volonté, C. Neurochem. Int. (2005) [Pubmed]
  12. Fluorescence and excitation Escherichia coli RecA protein spectra analyzed separately for tyrosine and tryptophan residues. Isaev-Ivanov, V.V., Kozlov, M.G., Baitin, D.M., Masui, R., Kuramitsu, S., Lanzov, V.A. Arch. Biochem. Biophys. (2000) [Pubmed]
  13. Extracellular ATP activates c-jun N-terminal kinase signaling and cell cycle progression in hepatocytes. Thevananther, S., Sun, H., Li, D., Arjunan, V., Awad, S.S., Wyllie, S., Zimmerman, T.L., Goss, J.A., Karpen, S.J. Hepatology (2004) [Pubmed]
  14. Differential specificities and simultaneous occupancy of human MutSalpha nucleotide binding sites. Martik, D., Baitinger, C., Modrich, P. J. Biol. Chem. (2004) [Pubmed]
  15. Novel Functions of Small Conductance Ca2+-activated K+ Channel in Enhanced Cell Proliferation by ATP in Brain Endothelial Cells. Yamazaki, D., Aoyama, M., Ohya, S., Muraki, K., Asai, K., Imaizumi, Y. J. Biol. Chem. (2006) [Pubmed]
  16. DNA unwinding is an Mcm complex-dependent and ATP hydrolysis-dependent process. Shechter, D., Ying, C.Y., Gautier, J. J. Biol. Chem. (2004) [Pubmed]
  17. ATPgammaS disrupts human immunodeficiency virus type 1 virion core integrity. Gurer, C., Höglund, A., Höglund, S., Luban, J. J. Virol. (2005) [Pubmed]
  18. Dual roles of P2 purinergic receptors in insulin-stimulated leptin production and lipolysis in differentiated rat white adipocytes. Lee, H., Jun, D.J., Suh, B.C., Choi, B.H., Lee, J.H., Do, M.S., Suh, B.S., Ha, H., Kim, K.T. J. Biol. Chem. (2005) [Pubmed]
  19. Agonist-induced force enhancement: the role of isoforms and phosphorylation of the myosin-targeting subunit of myosin light chain phosphatase. Richards, C.T., Ogut, O., Brozovich, F.V. J. Biol. Chem. (2002) [Pubmed]
  20. Dual role for adenine nucleotides in the regulation of the atrial natriuretic peptide receptor, guanylyl cyclase-A. Foster, D.C., Garbers, D.L. J. Biol. Chem. (1998) [Pubmed]
  21. ATPgammaS enhances the production of inflammatory mediators by a human dermal endothelial cell line via purinergic receptor signaling. Seiffert, K., Ding, W., Wagner, J.A., Granstein, R.D. J. Invest. Dermatol. (2006) [Pubmed]
  22. Cyclin-dependent kinase inhibitor p21 modulates the DNA primer-template recognition complex. Waga, S., Stillman, B. Mol. Cell. Biol. (1998) [Pubmed]
  23. Binding of Rad51p to DNA. Interaction of Rad51p with single- and double-stranded DNA. Namsaraev, E.A., Berg, P. J. Biol. Chem. (1998) [Pubmed]
  24. The nucleotidylylation of herpes simplex virus 1 regulatory protein alpha22 by human casein kinase II. Mitchell, C., Blaho, J.A., McCormick, A.L., Roizman, B. J. Biol. Chem. (1997) [Pubmed]
  25. Characterization and mutational analysis of the RecQ core of the bloom syndrome protein. Janscak, P., Garcia, P.L., Hamburger, F., Makuta, Y., Shiraishi, K., Imai, Y., Ikeda, H., Bickle, T.A. J. Mol. Biol. (2003) [Pubmed]
  26. The Ras-specific exchange factors mouse Sos1 (mSos1) and mSos2 are regulated differently: mSos2 contains ubiquitination signals absent in mSos1. Nielsen, K.H., Papageorge, A.G., Vass, W.C., Willumsen, B.M., Lowy, D.R. Mol. Cell. Biol. (1997) [Pubmed]
  27. ATP-dependent assembly of a ternary complex consisting of a DNA mismatch and the yeast MSH2-MSH6 and MLH1-PMS1 protein complexes. Habraken, Y., Sung, P., Prakash, L., Prakash, S. J. Biol. Chem. (1998) [Pubmed]
  28. Purinergic receptors are part of a functional signaling system for proliferation and differentiation of human epidermal keratinocytes. Greig, A.V., Linge, C., Terenghi, G., McGrouther, D.A., Burnstock, G. J. Invest. Dermatol. (2003) [Pubmed]
  29. Activation of the Drosophila TRP and TRPL channels requires both Ca2+ and protein dephosphorylation. Agam, K., Frechter, S., Minke, B. Cell Calcium (2004) [Pubmed]
  30. Genistein inhibits cardiac L-type Ca(2+) channel activity by a tyrosine kinase-independent mechanism. Belevych, A.E., Warrier, S., Harvey, R.D. Mol. Pharmacol. (2002) [Pubmed]
  31. Ca2+-independent hypoxic vasorelaxation in porcine coronary artery. Gu, M., Thorne, G.D., Wardle, R.L., Ishida, Y., Paul, R.J. J. Physiol. (Lond.) (2005) [Pubmed]
  32. In vivo stimulation of apical P2 receptors in collecting ducts: evidence for inhibition of sodium reabsorption. Shirley, D.G., Bailey, M.A., Unwin, R.J. Am. J. Physiol. Renal Physiol. (2005) [Pubmed]
  33. The N-terminal substrate-binding domain of ClpA unfoldase is highly mobile and extends axially from the distal surface of ClpAP protease. Ishikawa, T., Maurizi, M.R., Steven, A.C. J. Struct. Biol. (2004) [Pubmed]
  34. Extracellular nucleotides stimulate proliferation in MCF-7 breast cancer cells via P2-purinoceptors. Dixon, C.J., Bowler, W.B., Fleetwood, P., Ginty, A.F., Gallagher, J.A., Carron, J.A. Br. J. Cancer (1997) [Pubmed]
 
WikiGenes - Universities