The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

POL30  -  proliferating cell nuclear antigen

Saccharomyces cerevisiae S288c

Synonyms: PCNA, Proliferating cell nuclear antigen, YBR0811, YBR088C
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of POL30

  • Loading of yeast PCNA (POL30) is mechanistically distinct from analogous processes in E. coli (beta subunit by the gamma complex) and bacteriophage T4 (gp45 by gp44/62) [1].
  • Therefore, at least two subunits in RFC make strong contacts with PCNA, unlike the Escherichia coli gamma complex in which only one subunit makes strong contact with the beta clamp [2].
  • It also interacts with several host proteins, including the cell cycle regulator, retinoblastoma, and essential components of the cell DNA replication machinery, like proliferating nuclear cell antigen (PCNA) and RFC-1 [3].
  • The biochemical role of PCNA in rolling circle replication (RCR) of geminivirus DNA has not been explored in detail [4].

High impact information on POL30

  • To clarify the molecular basis of FEN-1 specificity and PCNA activation, we report here structures of FEN-1:DNA and PCNA:FEN-1-peptide complexes, along with fluorescence resonance energy transfer (FRET) and mutational results [5].
  • Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair [5].
  • The DNA and protein conformational changes, composite complex structures, FRET, and mutational results support enzyme-PCNA alignments and a kinked DNA pivot point that appear suitable to coordinate rotary handoffs of kinked DNA intermediates among enzymes localized by the three PCNA binding sites [5].
  • An msh6 mutation that eliminated the PCNA-binding site caused a mutator phenotype and a defect in the interaction with PCNA [6].
  • Our results suggest that PCNA functions directly in mispair recognition and that mispair recognition requires a higher-order complex containing proteins in addition to Msh2p-Msh6p [6].

Biological context of POL30

  • Here, we identify a point mutation, pol30-104, in the Saccharomyces cerevisiae POL30 gene encoding PCNA that increases the rate of instability of simple repetitive DNA sequences and raises the rate of spontaneous forward mutation [7].
  • Unlike other REV genes, which encode DNA polymerases and an associated subunit, REV6 has been found to be identical to POL30, which encodes proliferating cell nuclear antigen (PCNA), the subunit of the homotrimeric sliding clamp, in which the rev6-1 mutation produces a G178S substitution [8].
  • When bound to DNA, PCNA organizes various proteins involved in DNA replication, DNA repair, DNA modification, and chromatin modeling [1].
  • Our genetic studies with the pol30-119 mutation show that in addition to conferring a defect in Polzeta-dependent UV mutagenesis and in Poleta-dependent TLS, this PCNA mutation inhibits postreplicational repair of discontinuities that form in the newly synthesized strand across from UV lesions [9].
  • Interestingly, the Rad.RFC DNA damage checkpoint clamp loader unloads PCNA clamps from DNA [10].

Anatomical context of POL30


Associations of POL30 with chemical compounds


Physical interactions of POL30


Enzymatic interactions of POL30


Regulatory relationships of POL30

  • Proliferating cell nuclear antigen (pol30) mutations suppress cdc44 mutations and identify potential regions of interaction between the two encoded proteins [23].
  • In addition, we provide evidence for the activation of the RAD52 recombinational pathway in the pol30-119 mutant and we infer that SUMO conjugation at the lysine 164 residue of PCNA has a role in suppressing the Rad52-dependent postreplicational repair pathway [9].
  • In vivo, Asf1p and Hir proteins physically interact and together promote heterochromatic gene silencing in a manner requiring PCNA [24].
  • Importantly, PCNA stimulates the 3'-->5' exonuclease and 3'-phosphodiesterase activities of Apn2 [25].
  • Pol5p was identified and purified from yeast cell extracts and is an aphidicolin-sensitive DNA polymerase that is stimulated by yeast proliferating cell nuclear antigen (PCNA) [26].

Other interactions of POL30

  • Overexpression of POL30, which encodes the proliferating cell nuclear antigen, suppressed the replication defect of the rfc5 mutant but not its checkpoint defect [27].
  • The PCNA-RFC families of DNA clamps and clamp loaders [1].
  • The in vivo role of the PCNA interaction was investigated in the yeast Rad27 [16].
  • We suggest that newly synthesized DNA possessing discontinuities is restored to full size by a "copy choice" type of DNA synthesis which requires Rad5, a DNA-dependent ATPase, and also PCNA and Poldelta [28].
  • The RAD52 recombinational repair pathway is essential in pol30 (PCNA) mutants that accumulate small single-stranded DNA fragments during DNA synthesis [29].

Analytical, diagnostic and therapeutic context of POL30


  1. The PCNA-RFC families of DNA clamps and clamp loaders. Majka, J., Burgers, P.M. Prog. Nucleic Acid Res. Mol. Biol. (2004) [Pubmed]
  2. Replication factor C clamp loader subunit arrangement within the circular pentamer and its attachment points to proliferating cell nuclear antigen. Yao, N., Coryell, L., Zhang, D., Georgescu, R.E., Finkelstein, J., Coman, M.M., Hingorani, M.M., O'Donnell, M. J. Biol. Chem. (2003) [Pubmed]
  3. Interaction between a geminivirus replication protein and the plant sumoylation system. Castillo, A.G., Kong, L.J., Hanley-Bowdoin, L., Bejarano, E.R. J. Virol. (2004) [Pubmed]
  4. PCNA interacts with Indian mung bean yellow mosaic virus rep and downregulates Rep activity. Bagewadi, B., Chen, S., Lal, S.K., Choudhury, N.R., Mukherjee, S.K. J. Virol. (2004) [Pubmed]
  5. Structural basis for FEN-1 substrate specificity and PCNA-mediated activation in DNA replication and repair. Chapados, B.R., Hosfield, D.J., Han, S., Qiu, J., Yelent, B., Shen, B., Tainer, J.A. Cell (2004) [Pubmed]
  6. Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Flores-Rozas, H., Clark, D., Kolodner, R.D. Nat. Genet. (2000) [Pubmed]
  7. Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. Johnson, R.E., Kovvali, G.K., Guzder, S.N., Amin, N.S., Holm, C., Habraken, Y., Sung, P., Prakash, L., Prakash, S. J. Biol. Chem. (1996) [Pubmed]
  8. The Saccharomyces cerevisiae rev6-1 mutation, which inhibits both the lesion bypass and the recombination mode of DNA damage tolerance, is an allele of POL30, encoding proliferating cell nuclear antigen. Zhang, H., Gibbs, P.E., Lawrence, C.W. Genetics (2006) [Pubmed]
  9. Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Haracska, L., Torres-Ramos, C.A., Johnson, R.E., Prakash, S., Prakash, L. Mol. Cell. Biol. (2004) [Pubmed]
  10. Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C. Yao, N.Y., Johnson, A., Bowman, G.D., Kuriyan, J., O'Donnell, M. J. Biol. Chem. (2006) [Pubmed]
  11. The yeast analog of mammalian cyclin/proliferating-cell nuclear antigen interacts with mammalian DNA polymerase delta. Bauer, G.A., Burgers, P.M. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  12. RAD18-independent ubiquitination of proliferating-cell nuclear antigen in the avian cell line DT40. Simpson, L.J., Ross, A.L., Szüts, D., Alviani, C.A., Oestergaard, V.H., Patel, K.J., Sale, J.E. EMBO Rep. (2006) [Pubmed]
  13. Crystallization of proliferating cell nuclear antigen (PCNA) from Saccharomyces cerevisiae. Krishna, T.S., Fenyö, D., Kong, X.P., Gary, S., Chait, B.T., Burgers, P., Kuriyan, J. J. Mol. Biol. (1994) [Pubmed]
  14. Role of deoxyribonucleic acid polymerase epsilon in spermatogenesis in mice. Kamel, D., Mackey, Z.B., Sjöblom, T., Walter, C.A., McCarrey, J.R., Uitto, L., Palosaari, H., Lähdetie, J., Tomkinson, A.E., Syväoja, J.E. Biol. Reprod. (1997) [Pubmed]
  15. Progressive loss of SIRT1 with cell cycle withdrawal. Sasaki, T., Maier, B., Bartke, A., Scrable, H. Aging Cell (2006) [Pubmed]
  16. A novel role in DNA metabolism for the binding of Fen1/Rad27 to PCNA and implications for genetic risk. Gary, R., Park, M.S., Nolan, J.P., Cornelius, H.L., Kozyreva, O.G., Tran, H.T., Lobachev, K.S., Resnick, M.A., Gordenin, D.A. Mol. Cell. Biol. (1999) [Pubmed]
  17. ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. Gomes, X.V., Burgers, P.M. J. Biol. Chem. (2001) [Pubmed]
  18. Small ubiquitin-related modifier pathway is a major determinant of doxorubicin cytotoxicity in Saccharomyces cerevisiae. Huang, R.Y., Kowalski, D., Minderman, H., Gandhi, N., Johnson, E.S. Cancer Res. (2007) [Pubmed]
  19. Chromatin assembly factor I mutants defective for PCNA binding require Asf1/Hir proteins for silencing. Krawitz, D.C., Kama, T., Kaufman, P.D. Mol. Cell. Biol. (2002) [Pubmed]
  20. Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase delta. Gerik, K.J., Li, X., Pautz, A., Burgers, P.M. J. Biol. Chem. (1998) [Pubmed]
  21. Two modes of FEN1 binding to PCNA regulated by DNA. Gomes, X.V., Burgers, P.M. EMBO J. (2000) [Pubmed]
  22. On the specificity of interaction between the Saccharomyces cerevisiae clamp loader replication factor C and primed DNA templates during DNA replication. Hingorani, M.M., Coman, M.M. J. Biol. Chem. (2002) [Pubmed]
  23. Proliferating cell nuclear antigen (pol30) mutations suppress cdc44 mutations and identify potential regions of interaction between the two encoded proteins. McAlear, M.A., Howell, E.A., Espenshade, K.K., Holm, C. Mol. Cell. Biol. (1994) [Pubmed]
  24. Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Sharp, J.A., Fouts, E.T., Krawitz, D.C., Kaufman, P.D. Curr. Biol. (2001) [Pubmed]
  25. Stimulation of 3'-->5' exonuclease and 3'-phosphodiesterase activities of yeast apn2 by proliferating cell nuclear antigen. Unk, I., Haracska, L., Gomes, X.V., Burgers, P.M., Prakash, L., Prakash, S. Mol. Cell. Biol. (2002) [Pubmed]
  26. The fifth essential DNA polymerase phi in Saccharomyces cerevisiae is localized to the nucleolus and plays an important role in synthesis of rRNA. Shimizu, K., Kawasaki, Y., Hiraga, S., Tawaramoto, M., Nakashima, N., Sugino, A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  27. Rfc5, a small subunit of replication factor C complex, couples DNA replication and mitosis in budding yeast. Sugimoto, K., Shimomura, T., Hashimoto, K., Araki, H., Sugino, A., Matsumoto, K. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  28. Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Torres-Ramos, C.A., Prakash, S., Prakash, L. Mol. Cell. Biol. (2002) [Pubmed]
  29. The RAD52 recombinational repair pathway is essential in pol30 (PCNA) mutants that accumulate small single-stranded DNA fragments during DNA synthesis. Merrill, B.J., Holm, C. Genetics (1998) [Pubmed]
  30. Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Eissenberg, J.C., Ayyagari, R., Gomes, X.V., Burgers, P.M. Mol. Cell. Biol. (1997) [Pubmed]
WikiGenes - Universities