The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

ERYTHRITOL     (2S,3R)-butane-1,2,3,4-tetrol

Synonyms: Erythrit, Erythrol, Phycitol, Erythrite, Paycite, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ERYTHRITOL

 

Psychiatry related information on ERYTHRITOL

 

High impact information on ERYTHRITOL

 

Chemical compound and disease context of ERYTHRITOL

 

Biological context of ERYTHRITOL

 

Anatomical context of ERYTHRITOL

  • In dogs with pyloric occlusion, to prevent acid from reaching the duodenum, bombesin increased bile flow and bicarbonate output but had no effect on 14C erythritol biliary clearance [22].
  • Bonding efficacy of erythritol methacrylate solutions as dentin primers [23].
  • At 24 hr, bile flow was decreased in ANIT-treated rats, an effect accompanied by increased tight junction permeability, decreased bile acid excretion, and decreased erythritol clearance (estimate of canalicular flow) [24].
  • Differential scanning calorimetry (DSC), MC540 fluorescence, erythritol permeability, pressure/area isotherms on lipid monolayers and molecular modeling are used to compare the effect of CS and cholesterol on model phospholipid membranes [25].
  • Two metabolites, erythritol and anhydroerythritol, were identified following incubation of BDE with human microsomes, but these metabolites did not fully account for the disappearance of BDE, suggesting that there may be other as yet unidentified routes of metabolism [26].
 

Associations of ERYTHRITOL with other chemical compounds

 

Gene context of ERYTHRITOL

  • Interestingly, eryC mutants that were in addition spontaneously erythritol tolerant nevertheless exhibited wild-type-like intramacrophagic and intramurine replication [31].
  • The second gene (eryB) encoded an erythritol phosphate dehydrogenase [32].
  • Although increasing concentrations of polyols increased protein stability in general, the refolding yields for CS decreased at higher polyol concentrations, with erythritol reducing the folding yields at all concentrations tested [33].
  • The ery operon encodes enzymes involved in erythritol metabolism, and a link with virulence has since been discussed [31].
  • These data suggest bacteriostasis in the presence of erythritol results from the ATP drain caused by erythritol kinase [20].
 

Analytical, diagnostic and therapeutic context of ERYTHRITOL

References

  1. The role of altered intestinal permeability in the pathogenesis of salmonella diarrhea in the rhesus monkey. Kinsey, M.D., Dammin, G.J., Formal, S.B., Giannella, R.A. Gastroenterology (1976) [Pubmed]
  2. Allergic reactions after ingestion of erythritol-containing foods and beverages. Yunginger, J.W., Jones, R.T., Kita, H., Saito, K., Hefle, S.L., Taylor, S.L. J. Allergy Clin. Immunol. (2001) [Pubmed]
  3. Production of the siderophore 2,3-dihydroxybenzoic acid is required for wild-type growth of Brucella abortus in the presence of erythritol under low-iron conditions in vitro. Bellaire, B.H., Elzer, P.H., Baldwin, C.L., Roop, R.M. Infect. Immun. (2003) [Pubmed]
  4. Identification of some abnormal metabolites in plasma from uremic subjects. Bultitude, F.W., Newham, S.J. Clin. Chem. (1975) [Pubmed]
  5. Biosynthesis of the dimethylbenzene moiety of riboflavin and dimethylbenzimidazole: evidence for the involvement of C-1 of a pentose as a precursor. Alworth, W.L., Dove, M.F., Baker, H.N. Biochemistry (1977) [Pubmed]
  6. Production of L-sorbitol from L-fructose by Aureobasidium pullulans LP23 isolated from soy sauce mash. Sasahara, H., Izumori, K. J. Biosci. Bioeng. (2005) [Pubmed]
  7. Sugar and alcohol molecules provide a therapeutic strategy for the serpinopathies that cause dementia and cirrhosis. Sharp, L.K., Mallya, M., Kinghorn, K.J., Wang, Z., Crowther, D.C., Huntington, J.A., Belorgey, D., Lomas, D.A. FEBS J. (2006) [Pubmed]
  8. Effects of somatostatin on hepatic bile formation. Magnusson, I., Einarsson, K., Angelin, B., Nyberg, B., Bergström, K., Thulin, L. Gastroenterology (1989) [Pubmed]
  9. Effect of secretin on bile formation in rats with cirrhosis of the liver: structure-function relationship. Knuchel, J., Krähenbühl, S., Zimmermann, A., Reichen, J. Gastroenterology (1989) [Pubmed]
  10. Role of acid-base status in the response of the isolated amphibian gastric mucosa to back diffusion of H+. O'Brien, P., Bushell, M. Gastroenterology (1980) [Pubmed]
  11. Histamine effects on H+ permeability by isolated gastric mucosa. Fromm, D., Silen, M., Robertson, R. Gastroenterology (1976) [Pubmed]
  12. Protection against heat-induced cell killing by polyols in vitro. Henle, K.J., Peck, J.W., Higashikubo, R. Cancer Res. (1983) [Pubmed]
  13. Herbaspirillum frisingense sp. nov., a new nitrogen-fixing bacterial species that occurs in C4-fibre plants. Kirchhof, G., Eckert, B., Stoffels, M., Baldani, J.I., Reis, V.M., Hartmann, A. Int. J. Syst. Evol. Microbiol. (2001) [Pubmed]
  14. Improving water stress tolerance of the biocontrol yeast Candida sake grown in molasses-based media by physiological manipulation. Abadias, M., Teixidó, N., Usall, J., Viñas, I., Magan, N. Can. J. Microbiol. (2001) [Pubmed]
  15. Similarity of the effects of erythritol and xylitol on some risk factors of dental caries. Mäkinen, K.K., Saag, M., Isotupa, K.P., Olak, J., Nõmmela, R., Söderling, E., Mäkinen, P.L. Caries Res. (2005) [Pubmed]
  16. New developments in oxidative fermentation. Adachi, O., Moonmangmee, D., Toyama, H., Yamada, M., Shinagawa, E., Matsushita, K. Appl. Microbiol. Biotechnol. (2003) [Pubmed]
  17. Production of L-erythrose via L-erythrulose from erythritol using microbial and enzymatic reactions. Mizanur, R.M., Takeshita, K., Moshino, H., Takada, G., Izumori, K. J. Biosci. Bioeng. (2001) [Pubmed]
  18. Studies of the development of brain barrier systems to lipid insoluble molecules in fetal sheep. Dziegielewska, K.M., Evans, C.A., Malinowska, D.H., Møllgård, K., Reynolds, J.M., Reynolds, M.L., Saunders, N.R. J. Physiol. (Lond.) (1979) [Pubmed]
  19. Erythritol catabolism by Brucella abortus. Sperry, J.F., Robertson, D.C. J. Bacteriol. (1975) [Pubmed]
  20. Inhibition of growth by erythritol catabolism in Brucella abortus. Sperry, J.F., Robertson, D.C. J. Bacteriol. (1975) [Pubmed]
  21. Usefulness of trehalose fermentation and L-glutamic acid decarboxylation for identification of biochemically aberrant Providencia stuartii strains. Fischer, R., Penner, J.L., Zurinaga, G., Riddle, C., Sämisch, W., Brenner, D.J. J. Clin. Microbiol. (1989) [Pubmed]
  22. Effects of bombesin on fasting bile formation. Kortz, W.J., Nashold, J.R., Delong, E., Meyers, W.C. Ann. Surg. (1986) [Pubmed]
  23. Bonding efficacy of erythritol methacrylate solutions as dentin primers. Manabe, A., Katsuno, K., Itoh, K., Wakumoto, S., Miyasaka, T. J. Dent. Res. (1991) [Pubmed]
  24. Temporal relationship of changes in hepatobiliary function and morphology in rats following alpha-naphthylisothiocyanate (ANIT) administration. Kossor, D.C., Meunier, P.C., Handler, J.A., Sozio, R.S., Goldstein, R.S. Toxicol. Appl. Pharmacol. (1993) [Pubmed]
  25. Cholesterol versus cholesterol sulfate: effects on properties of phospholipid bilayers containing docosahexaenoic acid. Schofield, M., Jenski, L.J., Dumaual, A.C., Stillwell, W. Chem. Phys. Lipids (1998) [Pubmed]
  26. The role of hydrolysis in the detoxification of 1,2:3,4-diepoxybutane by human, rat, and mouse liver and lung in vitro. Boogaard, P.J., Bond, J.A. Toxicol. Appl. Pharmacol. (1996) [Pubmed]
  27. Fetal and maternal non-glucose carbohydrates and polyols concentrations in normal human pregnancies at term. Brusati, V., Józwik, M., Józwik, M., Teng, C., Paolini, C., Marconi, A.M., Battaglia, F.C. Pediatr. Res. (2005) [Pubmed]
  28. Biotyping of Propionibacterium acnes isolated from normal human facial skin. Kishishita, M., Ushijima, T., Ozaki, Y., Ito, Y. Appl. Environ. Microbiol. (1979) [Pubmed]
  29. 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis inhibitors increase erythritol production in Torula corallina, and DHN-melanin inhibits erythrose reductase. Lee, J.K., Jung, H.M., Kim, S.Y. Appl. Environ. Microbiol. (2003) [Pubmed]
  30. Polyol synthesis in Aspergillus niger: influence of oxygen availability, carbon and nitrogen sources on the metabolism. Diano, A., Bekker-Jensen, S., Dynesen, J., Nielsen, J. Biotechnol. Bioeng. (2006) [Pubmed]
  31. Analysis of the behavior of eryC mutants of Brucella suis attenuated in macrophages. Burkhardt, S., Jiménez de Bagüés, M.P., Liautard, J.P., Köhler, S. Infect. Immun. (2005) [Pubmed]
  32. The genes for erythritol catabolism are organized as an inducible operon in Brucella abortus. Sangari, F.J., Agüero, J., García-Lobo, J.M. Microbiology (Reading, Engl.) (2000) [Pubmed]
  33. Efficient refolding of aggregation-prone citrate synthase by polyol osmolytes: how well are protein folding and stability aspects coupled? Mishra, R., Seckler, R., Bhat, R. J. Biol. Chem. (2005) [Pubmed]
  34. Metabolism and disposition of erythritol after oral administration to rats. Noda, K., Oku, T. J. Nutr. (1992) [Pubmed]
  35. Fumarate-mediated inhibition of erythrose reductase, a key enzyme for erythritol production by Torula corallina. Lee, J.K., Koo, B.S., Kim, S.Y. Appl. Environ. Microbiol. (2002) [Pubmed]
  36. Interactions between metal ions and carbohydrates. Coordination behavior of neutral erythritol to Ca(II) and lanthanide ions. Yang, L., Su, Y., Xu, Y., Wang, Z., Guo, Z., Weng, S., Yan, C., Zhang, S., Wu, J. Inorganic chemistry. (2003) [Pubmed]
  37. Determination of sugar alcohols in confectioneries by high-performance liquid chromatography after nitrobenzoylation. Nojiri, S., Taguchi, N., Oishi, M., Suzuki, S. Journal of chromatography. A. (2000) [Pubmed]
  38. Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. Hallsworth, J.E., Magan, N. Microbiology (Reading, Engl.) (1995) [Pubmed]
 
WikiGenes - Universities