The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Gene Review

metK  -  S-adenosylmethionine synthetase

Escherichia coli str. K-12 substr. MG1655

Synonyms: ECK2937, JW2909, metX
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of metK

 

High impact information on metK

 

Chemical compound and disease context of metK

 

Biological context of metK

 

Associations of metK with chemical compounds

  • The mutations in metK and metX are highly unstable and readily yield kanamycin-resistant cells in which the chromosomal location of the kanamycin-resistance element has changed [1].
  • Mutations of the metK gene encoding S-adenosylmethionine synthetase, which is involved in Met metabolism, were detected in 12 norleucine-resistant mutants [18].
  • Glycyl-L-leucine (3 mM) usually enhanced lysyl-tRNA synthetase activity two- to threefold in wild-type cells but did not further stimulate the synthetase activity in metK mutants [10].
  • The SAMase-mediated hyperinduction of metH in wild-type cells and of the met genes assayed in metJ : : Tn5 and metK : : Tn5 cells provokes questions about how other elements such as the MetR activator protein or factors beyond the met regulon itself might be involved in the regulation of genes responsible for methionine biosynthesis [19].
  • The sole biosynthetic route to S-adenosylmethionine, the primary biological alkylating agent, is catalysed by S-adenosylmethionine synthetase (ATP:L-methionine S-adenosyltransferase) [1].
 

Other interactions of metK

  • Three of the mutations in the metK structural gene were then introduced into metJ and thrBC double-mutant strains; one of the resultant strains was found to accumulate 0.13 g/liter Met [18].
 

Analytical, diagnostic and therapeutic context of metK

References

  1. Isozymes of S-adenosylmethionine synthetase are encoded by tandemly duplicated genes in Escherichia coli. Satishchandran, C., Taylor, J.C., Markham, G.D. Mol. Microbiol. (1993) [Pubmed]
  2. Rickettsial metK-encoded methionine adenosyltransferase expression in an Escherichia coli metK deletion strain. Driskell, L.O., Tucker, A.M., Winkler, H.H., Wood, D.O. J. Bacteriol. (2005) [Pubmed]
  3. Rapid cloning of metK encoding methionine adenosyltransferase from Corynebacterium glutamicum by screening a genomic library on a high density colony-array. Grossmann, K., Herbster, K., Mack, M. FEMS Microbiol. Lett. (2000) [Pubmed]
  4. Characterization of sams genes of Amoeba proteus and the endosymbiotic X-bacteria. Jeon, T.J., Jeon, K.W. J. Eukaryot. Microbiol. (2003) [Pubmed]
  5. Enzymatic properties of S-adenosylmethionine synthetase from the archaeon Methanococcus jannaschii. Lu, Z.J., Markham, G.D. J. Biol. Chem. (2002) [Pubmed]
  6. The bifunctional active site of S-adenosylmethionine synthetase. Roles of the basic residues. Taylor, J.C., Markham, G.D. J. Biol. Chem. (2000) [Pubmed]
  7. Crystal structure of S-adenosylmethionine synthetase. Takusagawa, F., Kamitori, S., Misaki, S., Markham, G.D. J. Biol. Chem. (1996) [Pubmed]
  8. Structural and functional roles of cysteine 90 and cysteine 240 in S-adenosylmethionine synthetase. Reczkowski, R.S., Markham, G.D. J. Biol. Chem. (1995) [Pubmed]
  9. Investigation of monovalent cation activation of S-adenosylmethionine synthetase using mutagenesis and uranyl inhibition. McQueney, M.S., Markham, G.D. J. Biol. Chem. (1995) [Pubmed]
  10. Two modes of metabolic regulation of lysyl-transfer ribonucleic acid synthetase in Escherichia coli K-12. Hirshfield, I.N., Liu, C., Yeh, F.M. J. Bacteriol. (1977) [Pubmed]
  11. Glutamyl-gamma-methyl ester acts as a methionine analogue in Escherichia coli: analogue resistant mutants map at the metJ and metK loci. Kraus, J., Soll, D., Low, K.B. Genet. Res. (1979) [Pubmed]
  12. Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli. Newman, E.B., Budman, L.I., Chan, E.C., Greene, R.C., Lin, R.T., Woldringh, C.L., D'Ari, R. J. Bacteriol. (1998) [Pubmed]
  13. Enzymatic synthesis of S-adenosyl-L-methionine on the preparative scale. Park, J., Tai, J., Roessner, C.A., Scott, A.I. Bioorg. Med. Chem. (1996) [Pubmed]
  14. Conformational model for binding site recognition by the E.coli MetJ transcription factor. Liu, R., Blackwell, T.W., States, D.J. Bioinformatics (2001) [Pubmed]
  15. Genetic characterization of the metK locus in Escherichia coli K-12. Hunter, J.S., Greene, R.C., Su, C.H. J. Bacteriol. (1975) [Pubmed]
  16. The sequence of metK, the structural gene for S-adenosylmethionine synthetase in Escherichia coli. Markham, G.D., DeParasis, J., Gatmaitan, J. J. Biol. Chem. (1984) [Pubmed]
  17. Studies on the role of the metK gene product of Escherichia coli K-12. Wei, Y., Newman, E.B. Mol. Microbiol. (2002) [Pubmed]
  18. Effects of deregulation of methionine biosynthesis on methionine excretion in Escherichia coli. Usuda, Y., Kurahashi, O. Appl. Environ. Microbiol. (2005) [Pubmed]
  19. In vivo hydrolysis of S-adenosylmethionine induces the met regulon of Escherichia coli. Lamonte, B.L., Hughes, J.A. Microbiology (Reading, Engl.) (2006) [Pubmed]
  20. S-adenosylmethionine synthetase from Escherichia coli. Crystallization and preliminary X-ray diffraction studies. Gilliland, G.L., Markham, G.D., Davies, D.R. J. Biol. Chem. (1983) [Pubmed]
  21. Site-directed mutagenesis of rat liver S-adenosylmethionine synthetase. Identification of a cysteine residue critical for the oligomeric state. Mingorance, J., Alvarez, L., Sánchez-Góngora, E., Mato, J.M., Pajares, M.A. Biochem. J. (1996) [Pubmed]
 
WikiGenes - Universities