The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Gram-Positive Bacterial Infections

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Gram-Positive Bacterial Infections

 

High impact information on Gram-Positive Bacterial Infections

 

Chemical compound and disease context of Gram-Positive Bacterial Infections

 

Gene context of Gram-Positive Bacterial Infections

 

Analytical, diagnostic and therapeutic context of Gram-Positive Bacterial Infections

References

  1. Spontaneous peritonitis and systemic lupus erythematosus. Importance of accurate diagnosis of gram-positive bacterial infections. Lipsky, P.E., Hardin, J.A., Schour, L., Plotz, P.H. JAMA (1975) [Pubmed]
  2. Efficacy of teicoplanin in two dosage regimens for experimental endocarditis caused by a beta-lactamase-producing strain of Enterococcus faecalis with high-level resistance to gentamicin. Yao, J.D., Thauvin-Eliopoulos, C., Eliopoulos, G.M., Moellering, R.C. Antimicrob. Agents Chemother. (1990) [Pubmed]
  3. Palmitoleic acid isomer (C16:1delta6) in human skin sebum is effective against gram-positive bacteria. Wille, J.J., Kydonieus, A. Skin Pharmacol. Appl. Skin Physiol. (2003) [Pubmed]
  4. Linezolid: a new antibiotic. Xiong, Y.Q., Yeaman, M.R., Bayer, A.S. Drugs of today (Barcelona, Spain : 1998) (2000) [Pubmed]
  5. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Tauszig-Delamasure, S., Bilak, H., Capovilla, M., Hoffmann, J.A., Imler, J.L. Nat. Immunol. (2002) [Pubmed]
  6. Drosophila immunity: a large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Kambris, Z., Brun, S., Jang, I.H., Nam, H.J., Romeo, Y., Takahashi, K., Lee, W.J., Ueda, R., Lemaitre, B. Curr. Biol. (2006) [Pubmed]
  7. In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. Pili-Floury, S., Leulier, F., Takahashi, K., Saigo, K., Samain, E., Ueda, R., Lemaitre, B. J. Biol. Chem. (2004) [Pubmed]
  8. The function of mitogen-activated protein kinase phosphatase-1 in peptidoglycan-stimulated macrophages. Shepherd, E.G., Zhao, Q., Welty, S.E., Hansen, T.N., Smith, C.V., Liu, Y. J. Biol. Chem. (2004) [Pubmed]
  9. Structural insights into fusidic acid resistance and sensitivity in EF-G. Hansson, S., Singh, R., Gudkov, A.T., Liljas, A., Logan, D.T. J. Mol. Biol. (2005) [Pubmed]
  10. Synthesis and antibacterial activity of U-100592 and U-100766, two oxazolidinone antibacterial agents for the potential treatment of multidrug-resistant gram-positive bacterial infections. Brickner, S.J., Hutchinson, D.K., Barbachyn, M.R., Manninen, P.R., Ulanowicz, D.A., Garmon, S.A., Grega, K.C., Hendges, S.K., Toops, D.S., Ford, C.W., Zurenko, G.E. J. Med. Chem. (1996) [Pubmed]
  11. Use of linezolid, an oxazolidinone, in the treatment of multidrug-resistant gram-positive bacterial infections. Chien, J.W., Kucia, M.L., Salata, R.A. Clin. Infect. Dis. (2000) [Pubmed]
  12. Erythromycin: a microbial and clinical perspective after 30 years of clinical use (2). Washington, J.A., Wilson, W.R. Mayo Clin. Proc. (1985) [Pubmed]
  13. In vitro and in vivo evaluations of BMY-28100, a new oral cephalosporin. Tomatsu, K., Ando, S., Masuyoshi, S., Kondo, S., Hirano, M., Miyaki, T., Kawaguchi, H. J. Antibiot. (1987) [Pubmed]
  14. In vitro and in vivo evaluation of MDL 19,592, an oral cephalosporin. Erickson, R.C., Baumann, R.J., Gibson, C.B., Hoffman, P.F. J. Antibiot. (1983) [Pubmed]
  15. Selective induction of CCL18/PARC by staphylococcal enterotoxins in mononuclear cells and enhanced levels in septic and rheumatoid arthritis. Schutyser, E., Struyf, S., Wuyts, A., Put, W., Geboes, K., Grillet, B., Opdenakker, G., Van Damme, J. Eur. J. Immunol. (2001) [Pubmed]
  16. Lipopolysaccharide-binding protein is present in effluents of patients with Gram-negative and Gram-positive CAPD peritonitis. Schäfer, K., Schumann, R.R., Stöteknuel, S., Schollmeyer, P., Dobos, G.J. Nephrol. Dial. Transplant. (1998) [Pubmed]
  17. In vitro activity of moxifloxacin against common clinical bacterial isolates in Taiwan. Sheng, W.H., Wang, J.T., Chen, Y.C., Chang, S.C., Luh, K.T. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi. (2001) [Pubmed]
 
WikiGenes - Universities