The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Magnetoencephalography

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Magnetoencephalography

 

Psychiatry related information on Magnetoencephalography

 

High impact information on Magnetoencephalography

  • A discussion of the instrumentation based on the superconducting quantum interference device that is used for detecting the magnetic field distribution, the analytical techniques, current research, and future directions of magnetoencephalography in epilepsy research is presented [6].
  • On the basis of the assumption that use-dependent reorganization in these networks contributes to the fundamental abnormalities seen in focal dystonia, we treated 10 affected musicians and measured the concomitant somatosensory changes by using whole-head magnetoencephalography [7].
  • Predictions regarding amplitudes and latencies of cortical responses (M300, the magnetic counterpart to the P300) to targets were tested by investigating the neurophysiological effects of the post-T1 item (mask) by means of magnetoencephalography (MEG) [8].
  • We measured, with whole-scalp magnetoencephalography, evoked fields from 10 healthy subjects to 1-ms thulium-laser stimuli that selectively activated nociceptive nerve fibers [9].
  • In this Letter we point out that synchronization analysis techniques can detect spurious synchronization, if they are fed with a superposition of signals such as in electroencephalography or magnetoencephalography data [10].
 

Biological context of Magnetoencephalography

 

Anatomical context of Magnetoencephalography

  • Propagation of the neuronal population of the interictal epileptic spike was quantified in 5 patients with complex partial epilepsy arising from temporal lobe using electroencephalography and magnetoencephalography [13].
  • This is the first study to clarify the primary cortical processing of second pain by magnetoencephalography, through the selective activation of C-fibers, by the stimulation of a tiny area of skin with a CO2 laser [14].
  • We report five patients with rolandic epilepsy associated with giant somatosensory responses to median nerve stimulation, in whom we analyzed the pathophysiologic relationship between rolandic discharges and the somatosensory responses using magnetoencephalography [15].
 

Associations of Magnetoencephalography with chemical compounds

  • In the present study, we further investigated whether treatment with acamprosate could attenuate the post-alcohol withdrawal hyperexcitability or hyperarousal in humans using brain magnetoencephalography mapping of spontaneous fields [16].
  • METHODS: Neuronal magnetic fields, evoked by electrical stimuli to the thumb and/or to the index finger of the right hand, were recorded in different hand postures ('OPEN': opened hand and 'CLOSE': both fingers in opposite position to pick up something) by using a whole head type magnetoencephalography [17].
  • The effect of oral administration of sodium valproate in normal subjects was evaluated using whole-scalp magnetoencephalography, with results compared to the effect of sodium valproate in photosensitive children [18].
 

Gene context of Magnetoencephalography

  • Two cases (a young male and a girl, suffering intractable epilepsy) of diffuse subcortical laminar heterotopia, or so-called double cortex (DC) have been investigated using magnetoencephalography (MEG) [19].
  • The combined temporal and spatial resolution of MEG (magnetoencephalography) was used to study whether the same brain areas are similarly engaged in reading comprehension in normal and developmentally dyslexic adults [20].
  • Theta oscillations and human navigation: a magnetoencephalography study [21].
  • In the present study, we investigated the generators of nogo potentials by recording ERPs and by using magnetoencephalography (MEG) simultaneously during somatosensory go/nogo tasks to elucidate the regions involved in generating nogo potentials [22].
  • Using magnetoencephalography (MEG) we recorded responses in SI and SII in eight healthy humans to four different intensities of selectively nociceptive laser stimuli delivered to the dorsum of the right hand [23].
 

Analytical, diagnostic and therapeutic context of Magnetoencephalography

References

  1. Malignant rolandic-sylvian epilepsy in children: diagnosis, treatment, and outcomes. Otsubo, H., Chitoku, S., Ochi, A., Jay, V., Rutka, J.T., Smith, M.L., Elliott, I.M., Snead, O.C. Neurology (2001) [Pubmed]
  2. Clonidine- and methohexital-induced epileptiform discharges detected by magnetoencephalography (MEG) in patients with localization-related epilepsies. Kirchberger, K., Schmitt, H., Hummel, C., Peinemann, A., Pauli, E., Kettenmann, B., Stefan, H. Epilepsia (1998) [Pubmed]
  3. Identification of the epileptogenic tuber in patients with tuberous sclerosis: a comparison of high-resolution EEG and MEG. Jansen, F.E., Huiskamp, G., van Huffelen, A.C., Bourez-Swart, M., Boere, E., Gebbink, T., Vincken, K.L., van Nieuwenhuizen, O. Epilepsia (2006) [Pubmed]
  4. Epilepsy evaluation by electroencephalography and magnetoencephalography in Lafora-body disease: a case report. Verrotti, A., Salusti, B., Trotta, D., Madonna, L., Chiarelli, F., Pizzella, V. Acta Paediatr. (2003) [Pubmed]
  5. A neural complexity measure applied to MEG data in Alzheimer's disease. van Cappellen van Walsum, A.M., Pijnenburg, Y.A., Berendse, H.W., van Dijk, B.W., Knol, D.L., Scheltens, P., Stam, C.J. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. (2003) [Pubmed]
  6. Magnetoencephalography and epilepsy research. Rose, D.F., Smith, P.D., Sato, S. Science (1987) [Pubmed]
  7. Effective behavioral treatment of focal hand dystonia in musicians alters somatosensory cortical organization. Candia, V., Wienbruch, C., Elbert, T., Rockstroh, B., Ray, W. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  8. Target consolidation under high temporal processing demands as revealed by MEG. Kessler, K., Schmitz, F., Gross, J., Hommel, B., Shapiro, K., Schnitzler, A. Neuroimage (2005) [Pubmed]
  9. Common cortical network for first and second pain. Forss, N., Raij, T.T., Seppä, M., Hari, R. Neuroimage (2005) [Pubmed]
  10. Measuring phase synchronization of superimposed signals. Meinecke, F.C., Ziehe, A., Kurths, J., Müller, K.R. Phys. Rev. Lett. (2005) [Pubmed]
  11. Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography. Gross, J., Tass, P.A., Salenius, S., Hari, R., Freund, H.J., Schnitzler, A. J. Physiol. (Lond.) (2000) [Pubmed]
  12. Human auditory evoked mismatch field amplitudes vary as a function of vowel duration in healthy first-language speakers. Inouchi, M., Kubota, M., Ohta, K., Shirahama, Y., Takashima, A., Horiguchi, T., Matsushima, E. Neurosci. Lett. (2004) [Pubmed]
  13. Neocortical propagation in temporal lobe spike foci on magnetoencephalography and electroencephalography. Sutherling, W.W., Barth, D.S. Ann. Neurol. (1989) [Pubmed]
  14. Cerebral activation by the signals ascending through unmyelinated C-fibers in humans: a magnetoencephalographic study. Tran, T.D., Inui, K., Hoshiyama, M., Lam, K., Qiu, Y., Kakigi, R. Neuroscience (2002) [Pubmed]
  15. Magnetoencephalographic study of giant somatosensory evoked responses in patients with rolandic epilepsy. Kubota, M., Takeshita, K., Sakakihara, Y., Yanagisawa, M. J. Child Neurol. (2000) [Pubmed]
  16. Pharmacodynamic effects of acamprosate on markers of cerebral function in alcohol-dependent subjects administered as pretreatment and during alcohol abstinence. Boeijinga, P.H., Parot, P., Soufflet, L., Landron, F., Danel, T., Gendre, I., Muzet, M., Demazières, A., Luthringer, R. Neuropsychobiology (2004) [Pubmed]
  17. Hand posture modulates neuronal interaction in the primary somatosensory cortex of humans. Hamada, Y., Suzuki, R. Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology. (2003) [Pubmed]
  18. Effect of sodium valproate on neuromagnetic responses to chromatic flicker: implication for photosensitivity. Watanabe, K., Sayres, R., Shimojo, S., Imada, T., Nihei, K. Neurology & clinical neurophysiology [electronic resource] : NCN. (2004) [Pubmed]
  19. Magnetoencephalographic studies of two cases of diffuse subcortical laminar heterotopia or so-called double cortex. Toulouse, P., Agulhon, C., Taussig, D., Napuri, S., Biraben, A., Jannin, P., Carsin, M., Scarabin, J.M. Neuroimage (2003) [Pubmed]
  20. Semantic cortical activation in dyslexic readers. Helenius, P., Salmelin, R., Service, E., Connolly, J.F. Journal of cognitive neuroscience. (1999) [Pubmed]
  21. Theta oscillations and human navigation: a magnetoencephalography study. de Araújo, D.B., Baffa, O., Wakai, R.T. Journal of cognitive neuroscience. (2002) [Pubmed]
  22. Somato-motor inhibitory processing in humans: a study with MEG and ERP. Nakata, H., Inui, K., Wasaka, T., Akatsuka, K., Kakigi, R. Eur. J. Neurosci. (2005) [Pubmed]
  23. Differential coding of pain intensity in the human primary and secondary somatosensory cortex. Timmermann, L., Ploner, M., Haucke, K., Schmitz, F., Baltissen, R., Schnitzler, A. J. Neurophysiol. (2001) [Pubmed]
  24. Characterizing magnetic spike sources by using magnetoencephalography-guided neuronavigation in epilepsy surgery in pediatric patients. Iida, K., Otsubo, H., Matsumoto, Y., Ochi, A., Oishi, M., Holowka, S., Pang, E., Elliott, I., Weiss, S.K., Chuang, S.H., Snead, O.C., Rutka, J.T. J. Neurosurg. (2005) [Pubmed]
  25. Neuroimaging of epilepsy: therapeutic implications. Kuzniecky, R.I. NeuroRx : the journal of the American Society for Experimental NeuroTherapeutics. (2005) [Pubmed]
  26. Localization of distributed sources and comparison with functional MRI. Lantz, G., Spinelli, L., Menendez, R.G., Seeck, M., Michel, C.M. Epileptic disorders : international epilepsy journal with videotape. (2001) [Pubmed]
 
WikiGenes - Universities