The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Colletotrichum

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Colletotrichum

 

High impact information on Colletotrichum

  • Virulence was increased ninefold and was more rapidly effected; furthermore, the requirement for a long duration at high humidity was decreased by introducing NEP1 encoding a phytotoxic protein, to an Abutilon theophrasti-specific, weakly mycoherbicidal strain of Colletotrichum coccodes [3].
  • Here we report that ClaPEX6, an ortholog of PEX6, is required for the fungus Colletotrichum lagenarium to infect host plants [4].
  • We report the cloning of a mitogen-activated protein kinase kinase (MEK), CgMEK, from Colletotrichum gloeosporioides and its role in the induction of these developmental processes involved in pathogenesis [5].
  • Ethylene induced germination and appressorium formation in the Colletotrichum sp. penetrating climacteric fruit but not in other Colletotrichum strains [6].
  • Employing a strategy of targeted gene disruption, we generated a mutant strain (gpdhDelta) defective in glycerol-3-phosphate dehydrogenase in a hemibiotrophic plant pathogen, Colletotrichum gloeosporioides f.sp. malvae [7].
 

Chemical compound and disease context of Colletotrichum

 

Biological context of Colletotrichum

 

Anatomical context of Colletotrichum

 

Associations of Colletotrichum with chemical compounds

 

Gene context of Colletotrichum

  • The Colletotrichum lagenariu Ste12-like gene CST1 is essential for appressorium penetration [19].
  • Molecular characterization of CLPT1, a SEC4-like Rab/GTPase of the phytopathogenic fungus Colletotrichum lindemuthianum which is regulated by the carbon source [20].
  • The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium [21].
  • Identification of a gene product induced by hard-surface contact of Colletotrichum gloeosporioides conidia as a ubiquitin-conjugating enzyme by yeast complementation [22].
  • The OSC1 gene, encoding a MAP kinase (MAPK) related to yeast Hog1, was isolated from the fungal pathogen Colletotrichum lagenarium that causes cucumber anthracnose [23].
 

Analytical, diagnostic and therapeutic context of Colletotrichum

References

  1. Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Lincoln, J.E., Richael, C., Overduin, B., Smith, K., Bostock, R., Gilchrist, D.G. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  2. Osmotic dehydration of apple slices using a sucrose/CaCl2 combination to control spoilage caused by Botrytis cinerea, Colletotrichum acutatum, and Penicillium expansum. Chardonnet, C.O., Sams, C.E., Conway, W.S., Mount, J.R., Draughon, F.A. J. Food Prot. (2001) [Pubmed]
  3. Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control. Amsellem, Z., Cohen, B.A., Gressel, J. Nat. Biotechnol. (2002) [Pubmed]
  4. Peroxisomal metabolic function is required for appressorium-mediated plant infection by Colletotrichum lagenarium. Kimura, A., Takano, Y., Furusawa, I., Okuno, T. Plant Cell (2001) [Pubmed]
  5. A mitogen-activated protein kinase kinase required for induction of cytokinesis and appressorium formation by host signals in the conidia of Colletotrichum gloeosporioides. Kim, Y.K., Kawano, T., Li, D., Kolattukudy, P.E. Plant Cell (2000) [Pubmed]
  6. Timing of fungal invasion using host's ripening hormone as a signal. Flaishman, M.A., Kolattukudy, P.E. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  7. Targeted gene disruption of glycerol-3-phosphate dehydrogenase in Colletotrichum gloeosporioides reveals evidence that glycerol is a significant transferred nutrient from host plant to fungal pathogen. Wei, Y., Shen, W., Dauk, M., Wang, F., Selvaraj, G., Zou, J. J. Biol. Chem. (2004) [Pubmed]
  8. Isolation and in vitro and in vivo activity against Phytophthora capsici and Colletotrichum orbiculare of phenazine-1-carboxylic acid from Pseudomonas aeruginosa strain GC-B26. Lee, J.Y., Moon, S.S., Hwang, B.K. Pest Manag. Sci. (2003) [Pubmed]
  9. Characterization of expressed NBS-LRR resistance gene candidates from common bean. Ferrier-Cana, E., Geffroy, V., Macadré, C., Creusot, F., Imbert-Bolloré, P., Sévignac, M., Langin, T. Theor. Appl. Genet. (2003) [Pubmed]
  10. cDNA cloning, expression, and mutagenesis of scytalone dehydratase needed for pathogenicity of the rice blast fungus, Pyricularia oryzae. Motoyama, T., Imanishi, K., Yamaguchi, I. Biosci. Biotechnol. Biochem. (1998) [Pubmed]
  11. Biotransformation of progesterone to 14 alpha-hydroxypregna-1,4-diene-3,20-dione, a novel fungal metabolite, by Colletotrichum antirrhini. Njar, V.C., Shapiro, S., Arunachalam, T., Caspi, E. J. Steroid Biochem. (1985) [Pubmed]
  12. Cdc42 is required for proper growth and development in the fungal pathogen Colletotrichum trifolii. Chen, C., Ha, Y.S., Min, J.Y., Memmott, S.D., Dickman, M.B. Eukaryotic Cell (2006) [Pubmed]
  13. Microbial synthesis of chitinase in solid cultures and its potential as a biocontrol agent against phytopathogenic fungus Colletotrichum gloeosporioides. Sandhya, C., Binod, P., Nampoothiri, K.M., Szakacs, G., Pandey, A. Appl. Biochem. Biotechnol. (2005) [Pubmed]
  14. L-Phenylalanine ammonia-lyase from Phaseolus vulgaris. Characterisation and differential induction of multiple forms from elicitor-treated cell suspension cultures. Bolwell, G.P., Bell, J.N., Cramer, C.L., Schuch, W., Lamb, C.J., Dixon, R.A. Eur. J. Biochem. (1985) [Pubmed]
  15. Expression cloning of a fungal proline-rich glycoprotein specific to the biotrophic interface formed in the Colletotrichum-bean interaction. Perfect, S.E., O'Connell, R.J., Green, E.F., Doering-Saad, C., Green, J.R. Plant J. (1998) [Pubmed]
  16. A comparison of the pectate lyase genes, pel-1 and pel-2, of Colletotrichum gloeosporioides f.sp. malvae and the relationship between their expression in culture and during necrotrophic infection. Shih, J., Wei, Y., Goodwin, P.H. Gene (2000) [Pubmed]
  17. In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Maor, R., Haskin, S., Levi-Kedmi, H., Sharon, A. Appl. Environ. Microbiol. (2004) [Pubmed]
  18. Cloning and structural analysis of the melanin biosynthesis gene SCD1 encoding scytalone dehydratase in Colletotrichum lagenarium. Kubo, Y., Takano, Y., Endo, N., Yasuda, N., Tajima, S., Furusawa, I. Appl. Environ. Microbiol. (1996) [Pubmed]
  19. The Colletotrichum lagenariu Ste12-like gene CST1 is essential for appressorium penetration. Tsuji, G., Fujii, S., Tsuge, S., Shiraishi, T., Kubo, Y. Mol. Plant Microbe Interact. (2003) [Pubmed]
  20. Molecular characterization of CLPT1, a SEC4-like Rab/GTPase of the phytopathogenic fungus Colletotrichum lindemuthianum which is regulated by the carbon source. Dumas, B., Borel, C., Herbert, C., Maury, J., Jacquet, C., Balsse, R., Esquerré-Tugayé, M.T. Gene (2001) [Pubmed]
  21. The mitogen-activated protein kinase gene MAF1 is essential for the early differentiation phase of appressorium formation in Colletotrichum lagenarium. Kojima, K., Kikuchi, T., Takano, Y., Oshiro, E., Okuno, T. Mol. Plant Microbe Interact. (2002) [Pubmed]
  22. Identification of a gene product induced by hard-surface contact of Colletotrichum gloeosporioides conidia as a ubiquitin-conjugating enzyme by yeast complementation. Liu, Z.M., Kolattukudy, P.E. J. Bacteriol. (1998) [Pubmed]
  23. Fungicide activity through activation of a fungal signalling pathway. Kojima, K., Takano, Y., Yoshimi, A., Tanaka, C., Kikuchi, T., Okuno, T. Mol. Microbiol. (2004) [Pubmed]
  24. Phytotoxic and antifungal compounds from two Apiaceae species, Lomatium californicum and Ligusticum hultenii, rich sources of Z-ligustilide and apiol, respectively. Meepagala, K.M., Sturtz, G., Wedge, D.E., Schrader, K.K., Duke, S.O. J. Chem. Ecol. (2005) [Pubmed]
 
WikiGenes - Universities