The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

HOG1  -  mitogen-activated protein kinase HOG1

Saccharomyces cerevisiae S288c

Synonyms: High osmolarity glycerol response protein 1, L2931, L9354.2, MAP kinase HOG1, Mitogen-activated protein kinase HOG1, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of HOG1

 

High impact information on HOG1

  • Hog1 phosphorylation stimulates Nha1 activity, and this is crucial for the rapid reassociation of proteins with their target sites in chromatin [6].
  • This initial response to hyperosmolarity precedes and temporally regulates the activation of stress-response genes that depends on Hog1 phosphorylation of transcription factors in the nucleus [6].
  • A rapid, PBS2-dependent tyrosine phosphorylation of HOG1 protein occurred in response to increases in extracellular osmolarity [7].
  • While it is has been shown that the lipid kinase Fab1p and its product phosphatidylinositol 3,5-bisphosphate, and not the mitogen-activated protein kinase Hog1p, are central to this regulatory pathway, key effectors still await identification [8].
  • In yeast, a transcription repressor, Sko1, mediates regulation of the sodium-pump ENA1 gene by the Hog1 MAP kinase [9].
 

Chemical compound and disease context of HOG1

 

Biological context of HOG1

 

Anatomical context of HOG1

 

Associations of HOG1 with chemical compounds

  • HOG1 negatively regulated the expression of a number of proteins in response to citric acid stress, including Bmh1p [12].
  • ALD2 exhibits maximum induction with 0.3 M NaCl, negative regulation by protein kinase A and dependence on PBS2 and HOG1 protein kinases for osmotic induction [16].
  • Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast [13].
  • A catalytically inactive Cys-to-Ser Ptp2p mutant (Ptp2(C/S)p) is tightly bound to tyrosine-phosphorylated Hog1p in vivo [17].
  • Hog1p is activated by Pbs2p through phosphorylation of specific threonine and tyrosine residues [17].
 

Physical interactions of HOG1

  • SGD1 interacts genetically with both PLC1 and HOG1 (which encodes an osmosensing mitogen-activated protein kinase) [18].
  • Fus1p interacts with components of the Hog1p mitogen-activated protein kinase and Cdc42p morphogenesis signaling pathways to control cell fusion during yeast mating [19].
  • Both two-hybrid analyses and coprecipitation assays demonstrated that Hog1 binds strongly to the C-terminal region of Rck2 [20].
  • Hog1 interacts physically with Rpd3 in vivo and in vitro and, on stress, targets the deacetylase to specific osmostress-responsive genes [21].
 

Enzymatic interactions of HOG1

  • Disruption of PTP2 leads to elevated levels of tyrosine-phosphorylated Hog1p following exposure of cells to high osmolarity [17].
  • The relationship between the two Sln1p branches is unclear, however, the requirement for unphosphorylated pathway intermediates in Hog1p pathway activation and for phosphorylated intermediates in the activation of the Mcm1p reporter suggests that the two Sln1p branches are reciprocally regulated [22].
  • We show that Hog1 is robustly phosphorylated in a Pbs2-dependent way during oxidative stress, and that Rck2 also is phosphorylated under these circumstances [23].
  • Hog1 phosphorylated Smp1 in vitro at the C-terminal region [24].
  • Hog1 phosphorylates Sko1 in vitro at multiple sites within the N-terminal region [25].
 

Regulatory relationships of HOG1

  • We suggest that Hog1p may prevent osmolarity-induced cross talk by inhibiting Sho1p, perhaps as part of a feedback control on the HOG pathway [26].
  • Northern blot analyses suggest that Hog1p regulates Ptp2p and/or Ptp3p activity at the posttranscriptional level [17].
  • Thus, one function of Ptc1 is to inactivate Hog1 [27].
  • Overexpression of the protein tyrosine phosphatase Ptp2p suppresses the lethality of these mutations by dephosphorylating Hog1p [17].
  • Overexpression of SMP1 induced Hog1-dependent expression of osmoresponsive genes such as STL1, whereas smp1Delta cells were defective in their expression [24].
 

Other interactions of HOG1

  • We found that mutations in the HOG1 gene, encoding the p38-type MAPK of the HOG pathway, and in the PBS2 gene, encoding the activating kinase for Hog1p, allowed osmolarity-induced activation of the pheromone response pathway [26].
  • Finally, we have found that pseudohyphal growth exhibited by wild-type (HOG1) strains depends on SHO1, suggesting that Sho1p may be a receptor that feeds into the pseudohyphal growth pathway [26].
  • Consistent with its role as a negative regulator of Hog1, which accumulates in the nucleus upon activation, Ptc1 was found in both the nucleus and the cytoplasm [27].
  • The second mechanism of HOG1 MAP kinase activation is independent of the two-component osmosensor and involves the SHO1 transmembrane protein and the STE11 MAPKKK [28].
  • Moreover, Hog1p activation occurred specifically through the Sln1 branch [29].
  • Hog1p is shown to affect Fps1p phosphorylation [30].
 

Analytical, diagnostic and therapeutic context of HOG1

References

  1. Heat stress activates the yeast high-osmolarity glycerol mitogen-activated protein kinase pathway, and protein tyrosine phosphatases are essential under heat stress. Winkler, A., Arkind, C., Mattison, C.P., Burkholder, A., Knoche, K., Ota, I. Eukaryotic Cell (2002) [Pubmed]
  2. Osmolarity hypersensitivity of hog1 deleted mutants is suppressed by mutation in KSS1 in budding yeast Saccharomyces cerevisiae. Lee, S.J., Park, S.Y., Na, J.G., Kim, Y.J. FEMS Microbiol. Lett. (2002) [Pubmed]
  3. The immunosuppressant FK506 uncovers a positive regulatory cross-talk between the Hog1p and Gcn2p pathways. Rodriguez-Hernandez, C.J., Sanchez-Perez, I., Gil-Mascarell, R., Rodríguez-Afonso, A., Torres, A., Perona, R., Murguia, J.R. J. Biol. Chem. (2003) [Pubmed]
  4. Specialization of the HOG pathway and its impact on differentiation and virulence of Cryptococcus neoformans. Bahn, Y.S., Kojima, K., Cox, G.M., Heitman, J. Mol. Biol. Cell (2005) [Pubmed]
  5. Saccharomyces cerevisiae Hog1 protein phosphorylation upon exposure to bacterial endotoxin. Marques, J.M., Rodrigues, R.J., de Magalhães-Sant'ana, A.C., Gonçalves, T. J. Biol. Chem. (2006) [Pubmed]
  6. MAP kinase-mediated stress relief that precedes and regulates the timing of transcriptional induction. Proft, M., Struhl, K. Cell (2004) [Pubmed]
  7. An osmosensing signal transduction pathway in yeast. Brewster, J.L., de Valoir, T., Dwyer, N.D., Winter, E., Gustin, M.C. Science (1993) [Pubmed]
  8. The Fab1 phosphatidylinositol kinase pathway in the regulation of vacuole morphology. Efe, J.A., Botelho, R.J., Emr, S.D. Curr. Opin. Cell Biol. (2005) [Pubmed]
  9. Ion homeostasis during salt stress in plants. Serrano, R., Rodriguez-Navarro, A. Curr. Opin. Cell Biol. (2001) [Pubmed]
  10. The yeast histidine protein kinase, Sln1p, mediates phosphotransfer to two response regulators, Ssk1p and Skn7p. Li, S., Ault, A., Malone, C.L., Raitt, D., Dean, S., Johnston, L.H., Deschenes, R.J., Fassler, J.S. EMBO J. (1998) [Pubmed]
  11. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. Schüller, C., Brewster, J.L., Alexander, M.R., Gustin, M.C., Ruis, H. EMBO J. (1994) [Pubmed]
  12. Evidence of a new role for the high-osmolarity glycerol mitogen-activated protein kinase pathway in yeast: regulating adaptation to citric acid stress. Lawrence, C.L., Botting, C.H., Antrobus, R., Coote, P.J. Mol. Cell. Biol. (2004) [Pubmed]
  13. Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Mattison, C.P., Ota, I.M. Genes Dev. (2000) [Pubmed]
  14. The 'yeast cell wall chip' - a tool to analyse the regulation of cell wall biogenesis in Saccharomyces cerevisiae. Rodríguez-Peña, J.M., Pérez-Díaz, R.M., Alvarez, S., Bermejo, C., García, R., Santiago, C., Nombela, C., Arroyo, J. Microbiology (Reading, Engl.) (2005) [Pubmed]
  15. SakA MAP kinase is involved in stress signal transduction, sexual development and spore viability in Aspergillus nidulans. Kawasaki, L., Sánchez, O., Shiozaki, K., Aguirre, J. Mol. Microbiol. (2002) [Pubmed]
  16. A genomic locus in Saccharomyces cerevisiae with four genes up-regulated by osmotic stress. Miralles, V.J., Serrano, R. Mol. Microbiol. (1995) [Pubmed]
  17. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Wurgler-Murphy, S.M., Maeda, T., Witten, E.A., Saito, H. Mol. Cell. Biol. (1997) [Pubmed]
  18. Phospholipase C interacts with Sgd1p and is required for expression of GPD1 and osmoresistance in Saccharomyces cerevisiae. Lin, H., Nguyen, P., Vancura, A. Mol. Genet. Genomics (2002) [Pubmed]
  19. Fus1p interacts with components of the Hog1p mitogen-activated protein kinase and Cdc42p morphogenesis signaling pathways to control cell fusion during yeast mating. Nelson, B., Parsons, A.B., Evangelista, M., Schaefer, K., Kennedy, K., Ritchie, S., Petryshen, T.L., Boone, C. Genetics (2004) [Pubmed]
  20. Rck2 kinase is a substrate for the osmotic stress-activated mitogen-activated protein kinase Hog1. Bilsland-Marchesan, E., Ariño, J., Saito, H., Sunnerhagen, P., Posas, F. Mol. Cell. Biol. (2000) [Pubmed]
  21. The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoresponsive genes. De Nadal, E., Zapater, M., Alepuz, P.M., Sumoy, L., Mas, G., Posas, F. Nature (2004) [Pubmed]
  22. Intracellular glycerol levels modulate the activity of Sln1p, a Saccharomyces cerevisiae two-component regulator. Tao, W., Deschenes, R.J., Fassler, J.S. J. Biol. Chem. (1999) [Pubmed]
  23. Rck1 and Rck2 MAPKAP kinases and the HOG pathway are required for oxidative stress resistance. Bilsland, E., Molin, C., Swaminathan, S., Ramne, A., Sunnerhagen, P. Mol. Microbiol. (2004) [Pubmed]
  24. Targeting the MEF2-like transcription factor Smp1 by the stress-activated Hog1 mitogen-activated protein kinase. de Nadal, E., Casadomé, L., Posas, F. Mol. Cell. Biol. (2003) [Pubmed]
  25. Regulation of the Sko1 transcriptional repressor by the Hog1 MAP kinase in response to osmotic stress. Proft, M., Pascual-Ahuir, A., de Nadal, E., Ariño, J., Serrano, R., Posas, F. EMBO J. (2001) [Pubmed]
  26. The Hog1 MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae. O'Rourke, S.M., Herskowitz, I. Genes Dev. (1998) [Pubmed]
  27. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Warmka, J., Hanneman, J., Lee, J., Amin, D., Ota, I. Mol. Cell. Biol. (2001) [Pubmed]
  28. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Posas, F., Witten, E.A., Saito, H. Mol. Cell. Biol. (1998) [Pubmed]
  29. A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. Panadero, J., Pallotti, C., Rodríguez-Vargas, S., Randez-Gil, F., Prieto, J.A. J. Biol. Chem. (2006) [Pubmed]
  30. The MAPK Hog1p modulates Fps1p-dependent arsenite uptake and tolerance in yeast. Thorsen, M., Di, Y., Tängemo, C., Morillas, M., Ahmadpour, D., Van der Does, C., Wagner, A., Johansson, E., Boman, J., Posas, F., Wysocki, R., Tamás, M.J. Mol. Biol. Cell (2006) [Pubmed]
  31. Role of the Hog1 stress-activated protein kinase in the global transcriptional response to stress in the fungal pathogen Candida albicans. Enjalbert, B., Smith, D.A., Cornell, M.J., Alam, I., Nicholls, S., Brown, A.J., Quinn, J. Mol. Biol. Cell (2006) [Pubmed]
  32. Sequence analysis of a 37.6 kbp cosmid clone from the right arm of Saccharomyces cerevisiae chromosome XII, carrying YAP3, HOG1, SNR6, tRNA-Arg3 and 23 new open reading frames, among which several homologies to proteins involved in cell division control and to mammalian growth factors and other animal proteins are found. Verhasselt, P., Volckaert, G. Yeast (1997) [Pubmed]
  33. High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Kaeberlein, M., Andalis, A.A., Fink, G.R., Guarente, L. Mol. Cell. Biol. (2002) [Pubmed]
  34. The role of the sakA (Hog1) and tcsB (sln1) genes in the oxidant adaptation of Aspergillus fumigatus. Du, C., Sarfati, J., Latge, J.P., Calderone, R. Med. Mycol. (2006) [Pubmed]
  35. Identification of OS-2 MAP kinase-dependent genes induced in response to osmotic stress, antifungal agent fludioxonil, and heat shock in Neurospora crassa. Noguchi, R., Banno, S., Ichikawa, R., Fukumori, F., Ichiishi, A., Kimura, M., Yamaguchi, I., Fujimura, M. Fungal Genet. Biol. (2007) [Pubmed]
 
WikiGenes - Universities