The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Botrytis


High impact information on Botrytis

  • Strikingly, the ocp3 mutant shows enhanced resistance to the necrotrophic pathogens Botrytis cinerea and Plectosphaerella cucumerina [5].
  • Both AtPGIP1 and AtPGIP2 encode functional inhibitors of polygalacturonase from Botrytis, and their overexpression in Arabidopsis significantly reduces Botrytis disease symptoms [6].
  • However, analysis of seven B. oleracea var botrytis lines exhibiting both self-compatible and self-incompatible phenotypes showed that these lines carry an S allele very similar or identical to that of the B. oleracea var acephala line and that the SLA gene is interrupted by an insert in all seven lines [7].
  • The simultaneous loss of functional WEI5EIL1 and EIN3 nearly completely abolished the ethylene response in etiolated seedlings, and adult plants were highly susceptible to infection by the necrotrophic fungal pathogen Botrytis cinerea [8].
  • NHO1 is also required for resistance to the fungal pathogen Botrytis cinerea, indicating that NHO1 is not limited to bacterial resistance [9].

Chemical compound and disease context of Botrytis


Biological context of Botrytis


Anatomical context of Botrytis


Associations of Botrytis with chemical compounds

  • In contrast, a subset of defense responses regulated by the jasmonic acid (JA) signaling pathway, including expression of the defensin gene PDF1.2 and resistance to Botrytis cinerea, is impaired in ssi2 plants [20].
  • L-Galactono-gamma-lactone dehydrogenase (EC; GLDase), an enzyme that catalyzes the final step in the biosynthesis of L-ascorbic acid was purified 1693-fold from a mitochondrial extract of cauliflower (Brassica oleracea, var. botrytis) to apparent homogeneity with an overall yield of 1.1% [21].
  • Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms [22].
  • The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea [23].
  • In this work, we show that tomato (Lycopersicon esculentum Mill. cv Moneymaker) mutants with reduced ABA levels (sitiens plants) are much more resistant to the necrotrophic fungus Botrytis cinerea than wild-type (WT) plants [22].

Gene context of Botrytis

  • The ERF1 transcript is induced on infection by Botrytis cinerea, and overexpression of ERF1 in Arabidopsis is sufficient to confer resistance to necrotrophic fungi such as B. cinerea and Plectosphaerella cucumerina [24].
  • Furthermore, the ethylene-insensitive ein2 and JA-insensitive jar1 mutants enhance susceptibility of ssi1 plants to the necrotrophic fungus Botrytis cinerea [25].
  • Furthermore, adr1 plants exhibited resistance against the biotrophic pathogens Peronospora parasitica and Erysiphe cichoracearum but not the necrotrophic fungus Botrytis cinerea [26].
  • Infection of tomato leaves with the necrotrophic fungus Botrytis cinerea resulted in substantial changes in enzymatic and non-enzymatic components of the ascorbate-glutathione cycle as well as in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione transferase (GST), and l-galactono-gamma-lactone dehydrogenase (GLDH) activities [18].
  • Cel1 protein and mRNA levels are down-regulated in pericarp after Botrytis cinerea infection but are not affected in locular tissue [27].

Analytical, diagnostic and therapeutic context of Botrytis

  • Screening by means of Southern hybridization and PCR amplification detected the intron in the mt SSU rRNA genes of S. minor, S. trifoliorum and Sclerotium cepivorum, but not in other members of the Sclerotiniaceae, such as Botrytis anamorphs of Botryotinia spp., or in other ascomycetous and basidiomycetous fungi [28].
  • Antimicrobial activity of methyl cis-7-oxo deisopropyldehydroabietate on Botrytis cinerea and Lophodermium seditiosum: ultrastructural observations by transmission electron microscopy [29].


  1. A pathogen-inducible patatin-like lipid acyl hydrolase facilitates fungal and bacterial host colonization in Arabidopsis. La Camera, S., Geoffroy, P., Samaha, H., Ndiaye, A., Rahim, G., Legrand, M., Heitz, T. Plant J. (2005) [Pubmed]
  2. Spatio-temporal expression of patatin-like lipid acyl hydrolases and accumulation of jasmonates in elicitor-treated tobacco leaves are not affected by endogenous levels of salicylic acid. Dhondt, S., Gouzerh, G., Müller, A., Legrand, M., Heitz, T. Plant J. (2002) [Pubmed]
  3. Screening study of lead compounds for natural product-based fungicides: antifungal activity and biotransformation of 6alpha,7alpha-dihydroxy-beta-himachalene by Botrytis cinerea. Daoubi, M., Hernández-Galán, R., Benharref, A., Collado, I.G. J. Agric. Food Chem. (2005) [Pubmed]
  4. Osmotic dehydration of apple slices using a sucrose/CaCl2 combination to control spoilage caused by Botrytis cinerea, Colletotrichum acutatum, and Penicillium expansum. Chardonnet, C.O., Sams, C.E., Conway, W.S., Mount, J.R., Draughon, F.A. J. Food Prot. (2001) [Pubmed]
  5. An Arabidopsis homeodomain transcription factor, OVEREXPRESSOR OF CATIONIC PEROXIDASE 3, mediates resistance to infection by necrotrophic pathogens. Coego, A., Ramirez, V., Gil, M.J., Flors, V., Mauch-Mani, B., Vera, P. Plant Cell (2005) [Pubmed]
  6. Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Ferrari, S., Vairo, D., Ausubel, F.M., Cervone, F., De Lorenzo, G. Plant Cell (2003) [Pubmed]
  7. A functional S locus anther gene is not required for the self-incompatibility response in Brassica oleracea. Pastuglia, M., Ruffio-Châble, V., Delorme, V., Gaude, T., Dumas, C., Cock, J.M. Plant Cell (1997) [Pubmed]
  8. Five components of the ethylene-response pathway identified in a screen for weak ethylene-insensitive mutants in Arabidopsis. Alonso, J.M., Stepanova, A.N., Solano, R., Wisman, E., Ferrari, S., Ausubel, F.M., Ecker, J.R. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  9. Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. Kang, L., Li, J., Zhao, T., Xiao, F., Tang, X., Thilmony, R., He, S., Zhou, J.M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  10. ups1, an Arabidopsis thaliana camalexin accumulation mutant defective in multiple defence signalling pathways. Denby, K.J., Jason, L.J., Murray, S.L., Last, R.L. Plant J. (2005) [Pubmed]
  11. Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Audenaert, K., Pattery, T., Cornelis, P., Höfte, M. Mol. Plant Microbe Interact. (2002) [Pubmed]
  12. Ethylene sensing and gene activation in Botrytis cinerea: a missing link in ethylene regulation of fungus-plant interactions? Chagué, V., Danit, L.V., Siewers, V., Schulze-Gronover, C., Tudzynski, P., Tudzynski, B., Sharon, A. Mol. Plant Microbe Interact. (2006) [Pubmed]
  13. A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Hoeberichts, F.A., ten Have, A., Woltering, E.J. Planta (2003) [Pubmed]
  14. Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Siewers, V., Viaud, M., Jimenez-Teja, D., Collado, I.G., Gronover, C.S., Pradier, J.M., Tudzynski, B., Tudzynski, P. Mol. Plant Microbe Interact. (2005) [Pubmed]
  15. Infection of leaves of Arabidopsis thaliana by Botrytis cinerea: changes in ascorbic acid, free radicals and lipid peroxidation products. Muckenschnabel, I., Goodman, B.A., Williamson, B., Lyon, G.D., Deighton, N. J. Exp. Bot. (2002) [Pubmed]
  16. Antifungal properties of surangin B, a coumarin from Mammea longifolia. Deng, Y., Nicholson, R.A. Planta Med. (2005) [Pubmed]
  17. Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms involved in the antagonistic action of Trichoderma harzianum against phytopathogenic fungi. Schirmböck, M., Lorito, M., Wang, Y.L., Hayes, C.K., Arisan-Atac, I., Scala, F., Harman, G.E., Kubicek, C.P. Appl. Environ. Microbiol. (1994) [Pubmed]
  18. The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. Kuzniak, E., Skłodowska, M. J. Exp. Bot. (2004) [Pubmed]
  19. Stability and modulated expression of a hygromycin resistance gene integrated in Botrytis cinerea transformants. Hamada, W., Soulié, M.C., Malfatti, P., Bompeix, G., Boccara, M. FEMS Microbiol. Lett. (1997) [Pubmed]
  20. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Kachroo, P., Shanklin, J., Shah, J., Whittle, E.J., Klessig, D.F. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  21. Isolation of a cDNA coding for L-galactono-gamma-lactone dehydrogenase, an enzyme involved in the biosynthesis of ascorbic acid in plants. Purification, characterization, cDNA cloning, and expression in yeast. Ostergaard, J., Persiau, G., Davey, M.W., Bauw, G., Van Montagu, M. J. Biol. Chem. (1997) [Pubmed]
  22. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Audenaert, K., De Meyer, G.B., Höfte, M.M. Plant Physiol. (2002) [Pubmed]
  23. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea. Díaz, J., ten Have, A., van Kan, J.A. Plant Physiol. (2002) [Pubmed]
  24. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Berrocal-Lobo, M., Molina, A., Solano, R. Plant J. (2002) [Pubmed]
  25. Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssi1 mutant. Nandi, A., Kachroo, P., Fukushige, H., Hildebrand, D.F., Klessig, D.F., Shah, J. Mol. Plant Microbe Interact. (2003) [Pubmed]
  26. Targeted activation tagging of the Arabidopsis NBS-LRR gene, ADR1, conveys resistance to virulent pathogens. Grant, J.J., Chini, A., Basu, D., Loake, G.J. Mol. Plant Microbe Interact. (2003) [Pubmed]
  27. Characterization of tomato endo-beta-1,4-glucanase Cel1 protein in fruit during ripening and after fungal infection. Real, M.D., Company, P., García-Agustín, P., Bennett, A.B., González-Bosch, C. Planta (2004) [Pubmed]
  28. A group-I intron in the mitochondrial small subunit ribosomal RNA gene of Sclerotinia sclerotiorum. Carbone, I., Anderson, J.B., Kohn, L.M. Curr. Genet. (1995) [Pubmed]
  29. Antimicrobial activity of methyl cis-7-oxo deisopropyldehydroabietate on Botrytis cinerea and Lophodermium seditiosum: ultrastructural observations by transmission electron microscopy. Feio, S.S., Franca, S., Silva, A.M., Gigante, B., Roseiro, J.C., Marcelo Curto, M.J. J. Appl. Microbiol. (2002) [Pubmed]
WikiGenes - Universities