The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Exophiala


High impact information on Exophiala


Biological context of Exophiala


Associations of Exophiala with chemical compounds

  • Pulmonary infection due to Exophiala jeanselmei: successful treatment with ketoconazole [10].
  • Synchronous yeast-phase cultures of Wangiella dermatitidis were induced by starvation, heat shock, and inhibition of deoxyribonucleic acid synthesis by hydroxyurea [11].
  • The yeast-like fungus Exophiala jeanselmei degrades styrene via initial oxidation of the vinyl side chain to phenylacetic acid, which is subsequently hydroxylated to homogentisic acid [12].
  • Temperature-sensitive morphological mutants of Wangiella dermatitidis were stained with mithramycin, a fluorescent nuclear stain [13].
  • Characterization of the 19F NMR spectra of metabolite profiles of a series of fluorophenols, converted by purified phenol hydroxylase, catechol 1,2-dioxygenase, and/or by the yeast-like fungus Exophiala jeanselmei, provided possibilities for identification of the 19F NMR chemical shift values of fluorinated catechol and muconate metabolites [14].

Gene context of Exophiala

  • In the absence of a transformation system for Ci, we also used a reported method of introduction of heterologous DNA into cells of the phylogenetically related fungus, Wangiella dermatitidis, to confirm the function of the Ci URA5 gene [15].
  • Expression of a constitutively active Cdc42 homologue promotes development of sclerotic bodies but represses hyphal growth in the zoopathogenic fungus Wangiella (Exophiala) dermatitidis [16].
  • We analyzed a 402-bp sequence of the mitochondrial cytochrome b gene of 34 strains of Exophiala jeanselmei and 16 strains representing 12 related species [17].
  • Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase [12].
  • Ninety-seven isolates of Cladosporium spp., Exophiala spp., Fonsecaea spp., Lecythophora hoffmannii, Phaeoannellomyces werneckii, Phialophora spp., Wangiella dermatitidis, and Xylohypha bantiana were used to evaluate the API 20C Yeast Identification System for the differentiation of dematiaceous fungi [18].

Analytical, diagnostic and therapeutic context of Exophiala


  1. Tinea nigra secondary to Exophiala werneckii responding to itraconazole. Gupta, G., Burden, A.D., Shankland, G.S., Fallowfield, M.E., Richardson, M.D. Br. J. Dermatol. (1997) [Pubmed]
  2. Isolation, structure and HIV-1 integrase inhibitory activity of exophillic acid, a novel fungal metabolite from Exophiala pisciphila. Ondeyka, J.G., Zink, D.L., Dombrowski, A.W., Polishook, J.D., Felock, P.J., Hazuda, D.J., Singh, S.B. J. Antibiot. (2003) [Pubmed]
  3. WdChs2p, a class I chitin synthase, together with WdChs3p (class III) contributes to virulence in Wangiella (Exophiala) dermatitidis. Wang, Z., Zheng, L., Liu, H., Wang, Q., Hauser, M., Kauffman, S., Becker, J.M., Szaniszlo, P.J. Infect. Immun. (2001) [Pubmed]
  4. WdChs4p, a homolog of chitin synthase 3 in Saccharomyces cerevisiae, alone cannot support growth of Wangiella (Exophiala) dermatitidis at the temperature of infection. Wang, Z., Zheng, L., Hauser, M., Becker, J.M., Szaniszlo, P.J. Infect. Immun. (1999) [Pubmed]
  5. Antioxidant function of melanin in black fungi. Jacobson, E.S., Hove, E., Emery, H.S. Infect. Immun. (1995) [Pubmed]
  6. Loss of melanin in Wangiella dermatitidis does not result in greater susceptibility to antifungal agents. Polak, A., Dixon, D.M. Antimicrob. Agents Chemother. (1989) [Pubmed]
  7. In vitro activity of amphotericin B and itraconazole in combination with flucytosine, sulfadiazine and quinolones against Exophiala spinifera. Vitale, R.G., Afeltra, J., de Hoog, G.S., Rijs, A.J., Verweij, P.E. J. Antimicrob. Chemother. (2003) [Pubmed]
  8. Yeast-phase cell cycle of the polymorphic fungus Wangiella dermatitidis. Roberts, R.L., Szaniszlo, P.J. J. Bacteriol. (1980) [Pubmed]
  9. Nature and identification of Exophiala werneckii. Mok, W.Y. J. Clin. Microbiol. (1982) [Pubmed]
  10. Pulmonary infection due to Exophiala jeanselmei: successful treatment with ketoconazole. Manian, F.A., Brischetto, M.J. Clin. Infect. Dis. (1993) [Pubmed]
  11. Induction of synchronous growth in the yeast phase of Wangiella dermatitidis. Roberts, R.L., Lo, R.J., Szaniszlo, P.J. J. Bacteriol. (1980) [Pubmed]
  12. Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase. Cox, H.H., Faber, B.W., Van Heiningen, W.N., Radhoe, H., Doddema, H.J., Harder, W. Appl. Environ. Microbiol. (1996) [Pubmed]
  13. Nuclear division in temperature-sensitive multicellular mutants of Wangiella dermatitidis. Roberts, R.L., Lo, R.J., Szaniszlo, P.J. J. Bacteriol. (1979) [Pubmed]
  14. 19F nuclear magnetic resonance as a tool to investigate microbial degradation of fluorophenols to fluorocatechols and fluoromuconates. Boersma, M.G., Dinarieva, T.Y., Middelhoven, W.J., van Berkel, W.J., Doran, J., Vervoort, J., Rietjens, I.M. Appl. Environ. Microbiol. (1998) [Pubmed]
  15. Isolation and confirmation of function of the Coccidioides immitis URA5 (orotate phosphoribosyl transferase) gene. Yu, J.J., Zheng, L., Thomas, P.W., Szaniszlo, P.J., Cole, G.T. Gene (1999) [Pubmed]
  16. Expression of a constitutively active Cdc42 homologue promotes development of sclerotic bodies but represses hyphal growth in the zoopathogenic fungus Wangiella (Exophiala) dermatitidis. Ye, X., Szaniszlo, P.J. J. Bacteriol. (2000) [Pubmed]
  17. Identification, classification, and phylogeny of the pathogenic species Exophiala jeanselmei and related species by mitochondrial cytochrome b gene analysis. Wang, L., Yokoyama, K., Miyaji, M., Nishimura, K. J. Clin. Microbiol. (2001) [Pubmed]
  18. Evaluation of the API 20C yeast identification system for the differentiation of some dematiaceous fungi. Espinel-Ingroff, A., McGinnis, M.R., Pincus, D.H., Goldson, P.R., Kerkering, T.M. J. Clin. Microbiol. (1989) [Pubmed]
  19. Removal of toluene in a vapor-phase bioreactor containing a strain of the dimorphic black yeast Exophiala lecanii-corni. Woertz, J.R., Kinney, K.A., McIntosh, N.D., Szaniszlo, P.J. Biotechnol. Bioeng. (2001) [Pubmed]
  20. Purification and characterization of cyclohexanone 1,2-monooxygenase from Exophiala jeanselmei strain KUFI-6N. Hasegawa, Y., Nakai, Y., Tokuyama, T., Iwaki, H. Biosci. Biotechnol. Biochem. (2000) [Pubmed]
WikiGenes - Universities