The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Mitramycin     2-[4-[4-(4,5-dihydroxy-4,6- dimethyl-oxan-2...

Synonyms: MITHRAMYCIN, mithramycin a, GNF-Pf-3007, CHEMBL535101, Neuro_000012, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of MITHRAMYCIN


Psychiatry related information on MITHRAMYCIN


High impact information on MITHRAMYCIN


Chemical compound and disease context of MITHRAMYCIN


Biological context of MITHRAMYCIN


Anatomical context of MITHRAMYCIN


Associations of MITHRAMYCIN with other chemical compounds


Gene context of MITHRAMYCIN


Analytical, diagnostic and therapeutic context of MITHRAMYCIN

  • Here, we demonstrate that the DNA binding drug mithramycin displays a high affinity binding to the GC-rich elements in the collagen-alpha 1(I) promoter as measured by DNAse I protection and gel retardation assays [7].
  • This was shown by the lack of cytotoxicity on erythroid and myeloid in vitro primary cell cultures treated with mithramycin at concentrations effective for HbF induction [18].
  • Each histogram was obtained by flow microfluorimetry, using the DNA-specific fluorochrome, mithramycin [29].
  • A sensitive enzyme immunoassay for mithramycin (MTM) has been developed by using antibody induced in rabbits, beta-D-galactosidase-labeled MTM, and a double-antibody separation technique, which allowed us to measure accurately as little as 100 pg of MTM per assay tube [30].
  • Titration of mithramycin up to a drug-duplex ratio of 7:1 reveals further association of mithramycin with the complex but no new drug-oligonucleotide nuclear Overhauser enhancement contacts [31].


  1. Toxic epidermal necrolysis after mithramycin. Purpora, D., Ahern, M.J., Silverman, N. N. Engl. J. Med. (1978) [Pubmed]
  2. Mithramycin for hypoglycemia in malignant insulinoma. Kiang, D.T., Frenning, D.H., Bauer, G.E. N. Engl. J. Med. (1978) [Pubmed]
  3. A chain initiation factor common to both modular and aromatic polyketide synthases. Bisang, C., Long, P.F., Cortés, J., Westcott, J., Crosby, J., Matharu, A.L., Cox, R.J., Simpson, T.J., Staunton, J., Leadlay, P.F. Nature (1999) [Pubmed]
  4. In vivo differentiation of blast-phase chronic granulocytic leukemia. Expression of c-myc and c-abl protooncogenes. Koller, C.A., Campbell, V.W., Polansky, D.A., Mulhern, A., Miller, D.M. J. Clin. Invest. (1985) [Pubmed]
  5. Flow microfluorometric analysis of P388 murine leukemia after administration of vincristine and maytansine in vivo. Alabaster, O., Cassidy, M. J. Natl. Cancer Inst. (1978) [Pubmed]
  6. Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington's disease. Ferrante, R.J., Ryu, H., Kubilus, J.K., D'Mello, S., Sugars, K.L., Lee, J., Lu, P., Smith, K., Browne, S., Beal, M.F., Kristal, B.S., Stavrovskaya, I.G., Hewett, S., Rubinsztein, D.C., Langley, B., Ratan, R.R. J. Neurosci. (2004) [Pubmed]
  7. Mithramycin selectively inhibits collagen-alpha 1(I) gene expression in human fibroblast. Nehls, M.C., Brenner, D.A., Gruss, H.J., Dierbach, H., Mertelsmann, R., Herrmann, F. J. Clin. Invest. (1993) [Pubmed]
  8. Mithramycin inhibits SP1 binding and selectively inhibits transcriptional activity of the dihydrofolate reductase gene in vitro and in vivo. Blume, S.W., Snyder, R.C., Ray, R., Thomas, S., Koller, C.A., Miller, D.M. J. Clin. Invest. (1991) [Pubmed]
  9. Mithramycin blocks protein binding and function of the SV40 early promoter. Ray, R., Snyder, R.C., Thomas, S., Koller, C.A., Miller, D.M. J. Clin. Invest. (1989) [Pubmed]
  10. Species-specific differences in the toxicity and mutagenicity of the anticancer drugs mithramycin, chromomycin A3, and olivomycin. Singh, B., Gupta, R.S. Cancer Res. (1985) [Pubmed]
  11. Mithramycin SK, a novel antitumor drug with improved therapeutic index, mithramycin SA, and demycarosyl-mithramycin SK: three new products generated in the mithramycin producer Streptomyces argillaceus through combinatorial biosynthesis. Remsing, L.L., González, A.M., Nur-e-Alam, M., Fernández-Lozano, M.J., Braña, A.F., Rix, U., Oliveira, M.A., Méndez, C., Salas, J.A., Rohr, J. J. Am. Chem. Soc. (2003) [Pubmed]
  12. Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus, the producer of the antitumor polyketide elloramycin. Blanco, G., Patallo, E.P., Braña, A.F., Trefzer, A., Bechthold, A., Rohr, J., Méndez, C., Salas, J.A. Chem. Biol. (2001) [Pubmed]
  13. Potentiation of the toxicity of mithramycin by bacterial lipopolysaccharide. Bradley, S.G., Adams, A.C., Smith, M.C. Antimicrob. Agents Chemother. (1975) [Pubmed]
  14. Treatment of hypercalcemia. Attie, M.F. Endocrinol. Metab. Clin. North Am. (1989) [Pubmed]
  15. Sequence-selective DNA binding drugs mithramycin A and chromomycin A3 are potent inhibitors of neuronal apoptosis induced by oxidative stress and DNA damage in cortical neurons. Chatterjee, S., Zaman, K., Ryu, H., Conforto, A., Ratan, R.R. Ann. Neurol. (2001) [Pubmed]
  16. Tumor-inhibitory antibiotic uptake facilitated by leukoregulin: a new approach to drug delivery. Evans, C.H., Baker, P.D. J. Natl. Cancer Inst. (1988) [Pubmed]
  17. Mithramycin inhibits myointimal proliferation after balloon injury of the rat carotid artery in vivo. Chen, S.J., Chen, Y.F., Miller, D.M., Li, H., Oparil, S. Circulation (1994) [Pubmed]
  18. Mithramycin induces fetal hemoglobin production in normal and thalassemic human erythroid precursor cells. Fibach, E., Bianchi, N., Borgatti, M., Prus, E., Gambari, R. Blood (2003) [Pubmed]
  19. PCR-based development of DNA substrates containing modified bases: an efficient system for investigating the role of the exocyclic groups in chemical and structural recognition by minor groove binding drugs and proteins. Bailly, C., Payet, D., Travers, A.A., Waring, M.J. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  20. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease. Ryu, H., Lee, J., Hagerty, S.W., Soh, B.Y., McAlpin, S.E., Cormier, K.A., Smith, K.M., Ferrante, R.J. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  21. Tumor necrosis factor-alpha induces fractalkine expression preferentially in arterial endothelial cells and mithramycin A suppresses TNF-alpha-induced fractalkine expression. Ahn, S.Y., Cho, C.H., Park, K.G., Lee, H.J., Lee, S., Park, S.K., Lee, I.K., Koh, G.Y. Am. J. Pathol. (2004) [Pubmed]
  22. Inhibition of human B cell responsiveness by prostaglandin E2. Simkin, N.J., Jelinek, D.F., Lipsky, P.E. J. Immunol. (1987) [Pubmed]
  23. High resolution hydroxyl radical footprinting of the binding of mithramycin and related antibiotics to DNA. Cons, B.M., Fox, K.R. Nucleic Acids Res. (1989) [Pubmed]
  24. The Sp family of transcription factors in the regulation of the human and mouse MUC2 gene promoters. Aslam, F., Palumbo, L., Augenlicht, L.H., Velcich, A. Cancer Res. (2001) [Pubmed]
  25. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. Ryuto, M., Ono, M., Izumi, H., Yoshida, S., Weich, H.A., Kohno, K., Kuwano, M. J. Biol. Chem. (1996) [Pubmed]
  26. Regulation of histone deacetylase 4 expression by the SP family of transcription factors. Liu, F., Pore, N., Kim, M., Voong, K.R., Dowling, M., Maity, A., Kao, G.D. Mol. Biol. Cell (2006) [Pubmed]
  27. Tumor necrosis factor-alpha regulates expression of vascular endothelial growth factor receptor-2 and of its co-receptor neuropilin-1 in human vascular endothelial cells. Giraudo, E., Primo, L., Audero, E., Gerber, H.P., Koolwijk, P., Soker, S., Klagsbrun, M., Ferrara, N., Bussolino, F. J. Biol. Chem. (1998) [Pubmed]
  28. TGF-beta-induced expression of tissue inhibitor of metalloproteinases-3 gene in chondrocytes is mediated by extracellular signal-regulated kinase pathway and Sp1 transcription factor. Qureshi, H.Y., Sylvester, J., Mabrouk, M.E., Zafarullah, M. J. Cell. Physiol. (2005) [Pubmed]
  29. Flow microfluorimetric analysis of sensitive and resistant leukemia L1210 following 1-beta-D-arabinofuranosylcytosine in vivo. Alabaster, O., Bunnag, B. Cancer Res. (1976) [Pubmed]
  30. Enzyme immunoassay for the quantification of mithramycin using beta-D-galactosidase as a label. Fujiwara, K., Saita, T., Nakashima, K., Kitagawa, T. Cancer Res. (1986) [Pubmed]
  31. Nuclear magnetic resonance comparison of the binding sites of mithramycin and chromomycin on the self-complementary oligonucleotide d(ACCCGGGT)2. Evidence that the saccharide chains have a role in sequence specificity. Keniry, M.A., Banville, D.L., Simmonds, P.M., Shafer, R. J. Mol. Biol. (1993) [Pubmed]
WikiGenes - Universities